Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2021, Vol. 35 ›› Issue (4): 123-128.doi: 10.6040/j.issn.1673-3770.0.2020.313

Previous Articles     Next Articles

Drug therapy for myopia

LIU Ling,ZHANG Meixia   

  1. Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
  • Published:2021-08-05

Abstract: Myopia is the most common refractive error.Uncorrected refractive error, causing visual impairment, has become an important question of commonality sanitation, owing to affecting the quality of life of individuals and the weightily economy burden.With the prevalence of myopia increasing, controlling myopia progression and protecting eye health have gradually become the hot issue of global concern. And its current treatments include drugs, glasses, and surgery. In recent years, progress has been made in the treatment of myopia. This article focuses on the progress of research on drugs for controlling myopia, including muscarinic receptor antagonists, nicotinic receptor antagonists, and vasoactive intestinal peptides, and their mechanisms of action.

Key words: Myopia, Drug thergpy, Atropine, Muscarine receptor antagonist, Intraocular pressure

CLC Number: 

  • R778
[1] 世界卫生组织. 第66届世界卫生大会签署2014-2019年防治可避免盲和视觉损伤的全球行动计划[J]. 中华眼科杂志, 2014, 50(3): 233-240. doi:10.3760/cma.j.issn.0412-4081.2014.03.021.
[2] Holden BA, Fricke TR, Wilson DA, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050[J]. Ophthalmology, 2016, 123(5): 1036-1042. doi:10.1016/j.ophtha.2016.01.006.
[3] Arumugam B, McBrien NA. Muscarinic antagonist control of myopia: evidence for M4 and M1 receptor-based pathways in the inhibition of experimentally-induced axial myopia in the tree shrew[J]. Invest Ophthalmol Vis Sci, 2012, 53(9): 5827-5837. doi:10.1167/iovs.12-9943.
[4] Tong LY, Cui DM, Zeng JW. Topical bendazol inhibits experimental myopia progression and decreases the ocular accumulation of HIF-1α protein in young rabbits[J]. Ophthalmic Physiol Opt, 2020, 40(5): 567-576. doi:10.1111/opo.12717.
[5] Barathi VA, Kwan JL, Tan QSW, et al. Muscarinic cholinergic receptor(M2)plays a crucial role in the development of myopia in mice[J]. Dis Model Mech, 2013, 6(5): 1146-1158. doi:10.1242/dmm.010967.
[6] Carr BJ, Mihara K, Ramachandran R, et al. Myopia-inhibiting concentrations of muscarinic receptor antagonists block activation of Alpha2A-adrenoceptors in vitro[J]. Invest Ophthalmol Vis Sci, 2018, 59(7): 2778-2791. doi:10.1167/iovs.17-22562.
[7] McBrien NA, Moghaddam HO, Reeder AP. Atropine reduces experimental myopia and eye enlargement via a nonaccommodative mechanism[J]. Invest Ophthalmol Vis Sci, 1993, 34(1): 205-215.
[8] 陈辉. 毒蕈碱拮抗剂减缓近视发展的研究进展[J]. 中华实验眼科杂志, 2017, 35(6): 556-560. doi:10.3760/cma.j.issn.2095-0160.2017.06.015. CHEN Hui. Advances of muscarinic antagonists slowing the progression of myopia[J]. Chinese Journal of Experimental Ophthalmology, 2017, 35(6): 556-560. doi:10.3760/cma.j.issn.2095-0160.2017.06.015.
[9] Schwahn HN, Kaymak H, Schaeffel F. Effects of atropine on refractive development, dopamine release, and slow retinal potentials in the chick[J]. Vis Neurosci, 2000, 17(2): 165-176. doi:10.1017/s0952523800171184.
[10] Barathi VA, Chaurasia SS, Poidinger M, et al. Involvement of GABA transporters in atropine-treated myopic Retina as revealed by iTRAQ quantitative proteomics[J]. J Proteome Res, 2014, 13(11): 4647-4658. doi:10.1021/pr500558y.
[11] Wang LZ, Syn N, Li SY, et al. The penetration and distribution of topical atropine in animal ocular tissues[J]. Acta Ophthalmol, 2019, 97(2): e238-e247. doi:10.1111/aos.13889.
[12] Hsiao YT, Chang WA, Kuo MT, et al. Systematic analysis of transcriptomic profile of the effects of low dose atropine treatment on scleral fibroblasts using next-generation sequencing and bioinformatics[J]. Int J Med Sci, 2019, 16(12): 1652-1667. doi:10.7150/ijms.38571.
[13] Pineles SL, Kraker RT, VanderVeen DK, et al. Atropine for the prevention of myopia progression in children: a report by the American academy of ophthalmology[J]. Ophthalmology, 2017, 124(12): 1857-1866. doi:10.1016/j.ophtha.2017.05.032.
[14] Chia A, Chua WH, Cheung YB, et al. Atropine for the treatment of childhood myopia: safety and efficacy of 0.5%, 0.1%, and 0.01% doses(Atropine for the Treatment of Myopia 2)[J]. Ophthalmology, 2012, 119(2): 347-354. doi:10.1016/j.ophtha.2011.07.031.
[15] Chia A, Chua WH, Wen L, et al. Atropine for the treatment of childhood myopia: changes after stopping atropine 0.01%, 0.1% and 0.5%[J]. Am J Ophthalmol, 2014, 157(2): 451-457.e1. doi:10.1016/j.ajo.2013.09.020.
[16] Yam JC, Jiang Y, Tang SM, et al. Low-concentration atropine for myopia progression(LAMP)study: a randomized, double-blinded, placebo-controlled trial of 0.05%, 0.025%, and 0.01% atropine eye drops in myopia control[J]. Ophthalmology, 2019, 126(1): 113-124. doi:10.1016/j.ophtha.2018.05.029.
[17] Guo L, Fan L, Tao J, et al. Use of topical 0.01% atropine for controlling near work-induced transient myopia: a randomized, double-masked, placebo-controlled study[J]. J Ocul Pharmacol Ther, 2020, 36(2): 97-101. doi:10.1089/jop.2019.0062.
[18] 戴淑真, 张黎, 王丽娅, 等. 哌仑西平对近视鸡眼巩膜基质MMP-2和TIMP-2表达的影响[J]. 中国病理生理杂志, 2012, 28(8): 1494-1499. doi:10.3969/j.issn.1000-4718.2012.08.028. DAI Shuzhen, ZHANG Li, WANG Liya, et al. Effects of pirenzepine on expression of MMP-2 and TIMP-2 in stroma of sclera in chick myopic eyes[J]. Chinese Journal of Pathophysiology, 2012, 28(8): 1494-1499. doi:10.3969/j.issn.1000-4718.2012.08.028.
[19] Siatkowski RM, Cotter SA, Crockett RS, et al. Two-year multicenter, randomized, double-masked, placebo-controlled, parallel safety and efficacy study of 2% pirenzepine ophthalmic gel in children with myopia[J]. J Am Assoc Pediatr Ophthalmol Strabismus, 2008, 12(4): 332-339. doi:10.1016/j.jaapos.2007.10.014.
[20] 韩雯婷,荣翱,徐蔚.消旋山莨菪碱联合阿托品滴眼液预防青少年近视疗效分析[J].中华医学杂志,2019,99(24):1859-1863. doi:10.3760/cma.j.issn.0376-2491.2019.24.005. HAN Wenting, RONG Ao, XU Wei. Combination with different anticholinergic eyedrops for the treatment of children myopia[J]. National Medical Journal of China, 2019, 99(24):1859-1863. doi:10.3760/cma.j.issn.0376-2491.2019.24.005.
[21] Cottriall CL, Truong HT, McBrien NA. Inhibition of myopia development in chicks using himbacine: a role for M(4)receptors?[J]. Neuroreport, 2001, 12(11): 2453-2456. doi:10.1097/00001756-200108080-00033.
[22] Stone RA, Sugimoto R, Gill AS, et al. Effects of nicotinic antagonists on ocular growth and experimental myopia[J]. Invest Ophthalmol Vis Sci, 2001, 42(3): 557-565.
[23] El-Shazly AA. Passive smoking exposure might be associated with hypermetropia[J]. Ophthalmic Physiol Opt, 2012, 32(4): 304-307. doi:10.1111/j.1475-1313.2012.00918.x.
[24] Stone RA, Pendrak K, Sugimoto R, et al. Local patterns of image degradation differentially affect refraction and eye shape in chick[J]. Curr Eye Res, 2006, 31(1): 91-105. doi:10.1080/02713680500479517.
[25] Witkovsky P. Dopamine and retinal function[J]. Doc Ophthalmol, 2004, 108(1): 17-40. doi:10.1023/b:doop.0000019487.88486.0a.
[26] Yan T, Xiong W, Huang F, et al. Daily injection but not continuous infusion of apomorphine inhibits form-deprivation myopia in mice[J]. Invest Ophthalmol Vis Sci, 2015, 56(4): 2475-2485. doi:10.1167/iovs.13-12361.
[27] Huang F, Zhang L, Wang Q, et al. Dopamine D1 receptors contribute critically to the apomorphine-induced inhibition of form-deprivation myopia in mice[J]. Invest Ophthalmol Vis Sci, 2018, 59(6): 2623-2634. doi:10.1167/iovs.17-22578.
[28] Wang PB, Wang H, Liu SZ, et al. Effect of vasoactive intestinal peptide receptor antagonist VIPhybrid on the development of form deprivation myopia in chicks[J]. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 2008, 33(8): 669-675.
[29] Leung KH, Luo SM, Kwarteng R, et al. The myopia susceptibility locus vasoactive intestinal peptide receptor 2(VIPR2)contains variants with opposite effects[J]. Sci Rep, 2019, 9: 18165. doi:10.1038/s41598-019-54619-8.
[30] Cui D, Trier K, Zeng J, et al. Adenosine receptor protein changes in Guinea pigs with form deprivation myopia[J]. Acta Ophthalmol, 2010, 88(7): 759-765. doi:10.1111/j.1755-3768.2009.01559.x.
[31] Trier K, Olsen EB, Kobayashi T, et al. Biochemical and ultrastructural changes in rabbit sclera after treatment with 7-methylxanthine, theobromine, acetazolamide, or L-ornithine[J]. Br J Ophthalmol, 1999, 83(12): 1370-1375. doi:10.1136/bjo.83.12.1370.
[32] Trier K, Munk Ribel-Madsen S, Cui D, et al. Systemic 7-methylxanthine in retarding axial eye growth and myopia progression: a 36-month pilot study[J]. J Ocul Biol Dis Infor, 2008, 1(2/3/4): 85-93. doi:10.1007/s12177-008-9013-3.
[33] Hung LF, Arumugam B, Ostrin L, et al. The adenosine receptor antagonist, 7-methylxanthine, alters emmetropizing responses in infant macaques[J]. Invest Ophthalmol Vis Sci, 2018, 59(1): 472-486. doi:10.1167/iovs.17-22337.
[34] Wan W, Cui D, Trier K, et al. Effect of 7-methylxanthine on human retinal pigment epithelium cells cultured in vitro[J]. Mol Vis, 2017, 23: 1006-1014.
[35] Fischer AJ, Seltner RLP, Stell WK. Opiate and N-methyl-D-aspartate receptors in form-deprivation myopia[J]. Vis Neurosci, 1998, 15(6): 1089-1096. doi:10.1017/s0952523898156080.
[36] Seltner RLP, Rohrer B, Grant V, et al. Endogenous opiates in the chick Retina and their role in form-deprivation myopia[J]. Vis Neurosci, 1997, 14(5): 801-809. doi:10.1017/s0952523800011548.
[37] Fujikado T, Tsujikawa K, Tamura M, et al. Effect of a nitric oxide synthase inhibitor on lens-induced myopia[J]. Ophthalmic Res, 2001, 33(2): 75-79. doi:10.1159/000055647.
[38] Beauregard C, Liu Q, Chiou GCY. Effects of nitric oxide donors and nitric oxide synthase substrates on ciliary muscle contracted by carbachol and endothelin for possible use in myopia prevention[J]. J Ocular Pharmacol Ther, 2001, 17(1): 1-9. doi:10.1089/108076801750125577.
[39] Carr BJ, Stell WK. Nitric oxide(NO)mediates the inhibition of form-deprivation myopia by atropine in chicks[J]. Sci Rep, 2016, 6(1): 9. doi:10.1038/s41598-016-0002-7.
[40] Lisa A. Ostrin, Ashutosh Jnawali, Andrew Carkeet, et al. Twenty-four hour ocular and systemic diurnal rhythms in children[J]. Ophthalmic and Physiological Optics, 2019, 39(5): 358-369. doi: 10.1111/opo.12633.
[41] 尹靓瑶, 陈悦, 衡欣. 外源性褪黑素对豚鼠形觉剥夺性近视褪黑素受体、iNOS、c-fos表达的影响[J]. 眼科新进展, 2011, 31(5): 407-410. doi:10.13389/j.cnki.rao.2011.05.006. YIN Liangyao, CHEN Yue, HENG Xin. Effect of exogenous melatonin on expression of melatonin receptor, iNOS and c-fos in Guinea pigs with form deprived myopia[J]. Recent Advances in Ophthalmology, 2011, 31(5): 407-410. doi:10.13389/j.cnki.rao.2011.05.006.
[42] Stephanie Kearne, Lisa O'Donoghue L. Kirsty Pourshahidi, et al. Myopes have significantly higher serum melatonin concentrations than non-myopes[J]. Ophthalmic & physiological optics, 2017, 37(5): 557-567. doi: 10.1111/opo.12396
[43] Burfield HJ, Carkeet A, Ostrin LA. Ocular and systemic diurnal rhythms in emmetropic and myopic adults[J]. Invest Ophthalmol Vis Sci, 2019, 60(6): 2237-2247. doi:10.1167/iovs.19-26711.
[44] Jia Y, Hu DN, Zhou J. Human aqueous humor levels of TGF-β2: relationship with axial length[J]. Biomed Res Int, 2014, 2014: 258591. doi:10.1155/2014/258591.
[45] 徐福如, 蒋文君, 吴建峰, 等. 近视性巩膜重塑相关因子研究进展[J]. 眼科新进展, 2019, 39(9): 877-881. doi:10.13389/j.cnki.rao.2019.0200. XU Furu, JIANG Wenjun, WU Jianfeng, et al. Recent advance on cytokines associated with scleral remodeling in myopia[J]. Recent Advances in Ophthalmology, 2019, 39(9): 877-881. doi:10.13389/j.cnki.rao.2019.0200.
[46] Tian XD, Cheng YX, Liu GB, et al. Expressions of type I collagen, α2 integrin and β1 integrin in sclera of Guinea pig with defocus myopia and inhibitory effects of bFGF on the formation of myopia[J]. Int J Ophthalmol, 2013, 6(1): 54-58. doi:10.3980/j.issn.2222-3959.2013.01.11.
[47] 刘小琦. 胰岛素样生长因子Ⅱ及其受体基因与汉族人高度近视的关联研究[J]. 实用医院临床杂志, 2018, 15(6): 45-47. doi:10.3969/j.issn.1672-6170.2018.06.014. LIU Xiaoqi. A genetic association study between IGF2/IGF2R and high myopia in a Han Chinese population[J]. Practical Journal of Clinical Medicine, 2018, 15(6): 45-47. doi:10.3969/j.issn.1672-6170.2018.06.014.
[48] 蔡晓静, 朱煌, 冯彦青. 葛根素滴眼液对青少年近视眼的作用[J]. 中国中医眼科杂志, 2013, 23(5): 340-343. doi:10.13444/j.cnki.zgzyykzz.003198. CAI Xiaojing, ZHU Huang, FENG Yanqing. Effects of puerarin eye drop on children myopia[J]. China Journal of Chinese Ophthalmology, 2013, 23(5): 340-343. doi:10.13444/j.cnki.zgzyykzz.003198.
[49] Carr BJ, Nguyen CT, Stell WK. Alpha 2 -adrenoceptor agonists inhibit form-deprivation myopia in the chick[J]. Clin Exp Optom, 2019, 102(4): 418-425. doi:10.1111/cxo.12871.
[50] 胡诞宁. 近视的病因与发病机制研究进展[J]. 眼视光学杂志, 2004, 6(1): 1-5. doi:10.3760/cma.j.issn.1674-845X.2004.01.001. HU Danning. Progress in the study of myopic etiology and pathogenesis[J]. Chinese Journal of Optometry & Ophthalmology, 2004, 6(1): 1-5. doi:10.3760/cma.j.issn.1674-845X.2004.01.001.
[1] DAI ChengOverview,LI BinzhongGuidance. Advances in multifocal soft corneal contact lens research [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 100-105.
[2] ZHANG Taoran, WANG Wei, LI Mingming, HUANG Yingxiang. Subfoveal choroidal thickness changes following intravitreal ranibizumab treatment in choroidal neovascularization due to pathological myopia [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 68-71.
[3] PENG Jiao, ZHONG Dingjuan, CHEN Jiao, ZUO Jun, WANG Hua. The effect of the relationship between the diameter of the optical zone and the diameter of the dark pupil on the visual quality of patients with different degrees of myopia after SMILE [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 100-107.
[4] LI Ying. Importance of standardized methods in corneal refractive surgery and the prevention of complications [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(6): 1-6.
[5] ZHANG Ying, LEI Yulin, MA Zhixing, YANG Xinghua, ZHANG Jing, HOU Jie. Early clinical observation of corneal densitometry after SMILE combined with rapid corneal cross-linking [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(6): 52-58.
[6] LIU Yi, YU Mingkun, SUN Wei, SHAO Zhen, HU Yuanyuan, BI Hongsheng. The effectiveness and safety of orthokeratology on controlling myopia of children: a meta-analysis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(6): 92-100.
[7] RAN Hongyun, JIANG Keke,,ZHANG Jie. Analysis of underlying factors of refractive errors in infants with retinopathy of prematurity [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(5): 118-124.
[8] YUE Pengcheng, DU Qiuxuan, KONG Ling, QIAO Zhentao. A controlled Study of the accommodative parameters of eyes with uncorrected myopic anisometropia [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(4): 76-80.
[9] SONG Lihua, TAO Yuan,CUI Fenghua, GUO Yuanyuan, WANG Hong. Influence of breath holding on intraocular pressure measured by non-contact tonometry [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(6): 108-111.
[10] Pathologic myopia(PM)is a major cause of vision loss worldwide, particularly in Asian countries. Choroidal neovascularization(CNV)is a severe complication of PM, which can cause macular disorders, leading to central scotoma, metamorphopsia, visual field loss, and finally blindness if not treated. The advents of optical coherence topography(OCT), OCT angiography, and fundus fluorescein angiography are helpful in diagnosing CNV due to PM, which can show the position and size of CNV, whether active or passive. For the treatment, photodynamic and anti-vascular endothelial growth factor(anti-VEGF)therapies are widely applied. In recent years, administering the intravitreal anti-VEGF injection has become the first-line treatment for CNV secondary to PM. Many clinical studies have indicated that intravitreal anti-VEGF injections affect antagonizing neovascularization and reduce macular edema, thereby contributing to visual improvements and better long-term outcomes. This article provides an overview of the current diagnosis and treatment options for myopic CNV.. Diagnosis and treatment of choroidal neovascularization in pathologic myopia [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(5): 157-162.
[11] Ying LI,Yang JIANG. A discussion on the choice of surgical methods for correction of myopia [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(2): 1-6.
[12] Bo WAN,Donghui LI,Yan LUO,Ying LI. Lens vault changes and associated factors after implantation of implantable collamer lenses with central flow [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(2): 36-41.
[13] Xuanqi WANG. Research advances on vault and relevant factors after implantable collamer lens implantation [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(2): 72-78.
[14] LI Rui, LI Yong, XIE Hongtao, YUE ZhangXian, LIU Zhaochen, YUAN huimin. Effects of intraocular lens implantation and postoperative intraocular pressure fluctuations on the fundus macular and optic disc vascular density [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(1): 89-92.
[15] Danfeng ZHANG. Changes in the ocular biometric parameters before and after cycloplegia in juveniles with different degrees of myopia [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(5): 121-124.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIN Bin,WANGHui-ge . Functional endoscopic sinus surgery, FESS[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(6): 481 -487 .
[2] GONG Lei,SUN Jie,XUE Zi-chao,LI Jing-hua,XUE Wei-guo . DNA analysis of the cell cycle in sino-nasal neoplasm[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 193 -195 .
[3] CHEN Wen-wen . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(5): 472 -472 .
[4] LUAN Jiangang,LIANG Chuanyu,WEN Yanjun,LI Jiong . Construction of RNAi expressing plasmid vector of pSIRENshuttle for EGFR gene silencing[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(1): 4 -8 .
[5] MA Jing, ZHONG Cui-ping . Surgical method for nasopharyngeal fibroangioma encroaching on fossa pterygopalatina: with a report of 5 cases[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(1): 30 -32 .
[6] LIU Qiang-he,LUO Xiang-lin,GENG Wan-ping,CHEN Chen,LEI Xun,LIU Fang-xian,DENG Ming . Age-related spiral ganglion neuron damages and hearing loss in senescence accelerated mice[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 215 -217 .
[7] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 223 -226 .
[8] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 246 -247 .
[9] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 250 -252 .
[10] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 260 -262 .