Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2021, Vol. 35 ›› Issue (6): 132-137.doi: 10.6040/j.issn.1673-3770.0.2021.096
Previous Articles Next Articles
WANG Junxin1,2,SUN Yan2
CLC Number:
[1] Yang J, Antin P, Berx G, et al. Guidelines and definitions for research on epithelial-mesenchymal transition[J]. Nat Rev Mol Cell Biol, 2020, 21(6): 341-352. doi:10.1038/s41580-020-0237-9. [2] Kim DH, Xing TS, Yang ZB, et al. Epithelial mesenchymal transition in embryonic development, tissue repair and cancer: a comprehensive overview[J]. J Clin Med, 2017, 7(1): E1. doi:10.3390/jcm7010001. [3] Razali RA, Lokanathan Y, Yazid MD, et al. Modulation of epithelial to mesenchymal transition signaling pathways by olea europaea and its active compounds[J]. Int J Mol Sci, 2019, 20(14). doi: 10.3390/ijms20143492. [4] Lee RC, Feinbaum RL, Ambros V. The c elegans heterochronic gene Lin-4 encodes small RNAs with antisense complementarity to Lin-14[J]. Cell, 1993, 75(5): 843-854. doi:10.1016/0092-8674(93)90529-y. [5] 谢益, 韩锋产. miRNAs与内耳发育和听觉毛细胞凋亡与再生的研究进展[J]. 山东大学耳鼻喉眼学报, 2019,33(2): 126-129. doi: 10.6040/j.issn.1673-3770.0.2018.268. XIE Yi, HAN Fengchan. Role of miRNAs in inner ear development and apoptosis or regeneration of auditory hair cells[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019,33(2): 126-129. doi: 10.6040/j.issn.1673-3770.0.2018.268. [6] Lagos-Quintana M, Rauhut R, Lendeckel W, et al. Identification of novel genes coding for small expressed RNAs[J]. Science, 2001, 294(5543): 853-858. doi:10.1126/science.1064921. [7] Alizadeh M, Safarzadeh A, Beyranvand F, et al. The potential role of miR-29 in health and cancer diagnosis, prognosis, and therapy[J]. J Cell Physiol, 2019, 234(11): 19280-19297. doi:10.1002/jcp.28607. [8] Hanna A, Humeres C, Frangogiannis NG. The role of Smad signaling cascades in cardiac fibrosis[J]. Cell Signal, 2021, 77: 109826. doi:10.1016/j.cellsig.2020.109826. [9] Gu YY, Liu XS, Huang XR, et al. Diverse role of TGF-β in kidney disease[J]. Front Cell Dev Biol, 2020, 8: 123. doi:10.3389/fcell.2020.00123. [10] Ma J, Sanchez-Duffhues G, Goumans MJ, et al. TGF-β-induced endothelial to mesenchymal transition in disease and tissue engineering[J]. Front Cell Dev Biol, 2020, 8: 260. doi:10.3389/fcell.2020.00260. [11] Hu HH, Chen DQ, Wang YN, et al. New insights into TGF-β/Smad signaling in tissue fibrosis[J]. Chem Biol Interact, 2018, 292: 76-83. doi:10.1016/j.cbi.2018.07.008. [12] Yu JW, Duan WJ, Huang XR, et al. MicroRNA-29b inhibits peritoneal fibrosis in a mouse model of peritoneal dialysis[J]. Lab Invest, 2014, 94(9): 978-990. doi:10.1038/labinvest.2014.91. [13] Wang T, Li Y, Chen J, et al. TGF-β1/Smad3 signaling promotes collagen synthesis in pulmonary artery smooth muscle by down-regulating miR-29b[J]. International journal of clinical and experimental pathology, 2018, 11(12): 5592-5601. PMID: 31949646 [14] Zhang Y, Huang XR, Wei LH, et al. miR-29b as a therapeutic agent for angiotensin II-induced cardiac fibrosis by targeting TGF-β/Smad3 signaling[J]. Mol Ther, 2014, 22(5): 974-985. doi:10.1038/mt.2014.25. [15] Li LR, Ren SH, Hao XD, et al. MicroRNA-29b inhibits human vascular smooth muscle cell proliferation via targeting the TGF-β/Smad3 signaling pathway[J]. Exp Ther Med, 2021, 21(5): 492. doi:10.3892/etm.2021.9923. [16] Liang C, Bu S, Fan X. Suppressive effect of microRNA-29b on hepatic stellate cell activation and its crosstalk with TGF-β1/Smad3[J]. Cell Biochem Funct, 2016, 34(5): 326-333. doi:10.1002/cbf.3193. [17] Li JX, Du SH, Sheng XJ, et al. MicroRNA-29b inhibits endometrial fibrosis by regulating the Sp1-TGF-β1/smad-CTGF axis in a rat model[J]. Reprod Sci, 2016, 23(3): 386-394. doi:10.1177/1933719115602768. [18] Guo JD, Lin Q, Shao Y, et al. miR-29b promotes skin wound healing and reduces excessive scar formation by inhibition of the TGF-β1/Smad/CTGF signaling pathway[J]. Can J Physiol Pharmacol, 2017, 95(4): 437-442. doi:10.1139/cjpp-2016-0248. [19] Strippoli R, Moreno-Vicente R, Battistelli C, et al. Molecular Mechanisms Underlying Peritoneal EMT and Fibrosis[J]. Stem Cells Int, 2016. doi: 10.1155/2016/3543678. [20] Li N, Cui JL, Duan XC, et al. Suppression of type I collagen expression by miR-29b via PI3K, Akt, and Sp1 pathway in human tenon's fibroblasts[J]. Invest Ophthalmol Vis Sci, 2012, 53(3): 1670. doi:10.1167/iovs.11-8670. [21] Yu J, Luo HM, Li N, et al. Suppression of type I collagen expression by miR-29b via PI3K, Akt, and Sp1 pathway, part II: an in vivo investigation[J]. Invest Ophthalmol Vis Sci, 2015, 56(10): 6019-6028. doi:10.1167/iovs.15-16558. [22] Wang J, Chu ES, Chen HY, et al. microRNA-29b prevents liver fibrosis by attenuating hepatic stellate cell activation and inducing apoptosis through targeting PI3K/AKT pathway[J]. Oncotarget, 2015, 6(9): 7325-7338. doi:10.18632/oncotarget.2621. [23] Hu HT, Hu S, Xu S, et al. miR-29b regulates Ang II-induced EMT of rat renal tubular epithelial cells via targeting PI3K/AKT signaling pathway[J]. Int J Mol Med, 2018, 42(1): 453-460. doi:10.3892/ijmm.2018.3579. [24] Kumar P, Raeman R, Chopyk DM, et al. Adiponectin inhibits hepatic stellate cell activation by targeting the PTEN/AKT pathway[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(10): 3537-3545. doi:10.1016/j.bbadis.2018.08.012. [25] Yu F, Chen B, Dong P, et al. HOTAIR epigenetically modulates PTEN expression via MicroRNA-29b: a novel mechanism in regulation of liver fibrosis[J]. Mol Ther, 2017, 25(1): 205-217. doi:10.1016/j.ymthe.2016.10.015. [26] Zuo YY, Liu YH. New insights into the role and mechanism of Wnt/β-catenin signalling in kidney fibrosis[J]. Nephrology(Carlton), 2018, 23(4): 38-43. doi:10.1111/nep.13472. [27] Wang YC, Liu JS, Chen JY, et al. MiR-29 mediates TGFβ 1-induced extracellular matrix synthesis through activation of Wnt/β -catenin pathway in human pulmonary fibroblasts[J]. Technol Health Care, 2015, 23(1): S119-S125. doi:10.3233/thc-150943. [28] Zhang H, Chen J, Shen ZY, et al. Indoxyl sulfate accelerates vascular smooth muscle cell calcification via microRNA-29b dependent regulation of Wnt/β-catenin signaling[J]. Toxicol Lett, 2018, 284: 29-36. doi:10.1016/j.toxlet.2017.11.033. [29] Ding DY, Li CF, Zhao TC, et al. LncRNA H19/miR-29b-3p/PGRN axis promoted epithelial-mesenchymal transition of colorectal cancer cells by acting on wnt signaling[J]. Mol Cells, 2018, 41(5): 423-435. doi:10.14348/molcells.2018.2258. [30] Liu W, Ruan T, Ji X, et al. The Gli1-Snail axis contributes to Salmonella Typhimurium-induced disruption of intercellular junctions of intestinal epithelial cells[J]. Cell Microbiol, 2020, 22(8): e13211. doi:10.1111/cmi.13211. [31] Cui L, Zhang Y, Ge X, et al. Downregulated PEG3 ameliorates cardiac fibrosis and myocardial injury in mice with ischemia/reperfusion through the NF-κB signaling pathway[J]. J Bioenerg Biomembr, 2020, 52(3): 143-154. doi:10.1007/s10863-020-09831-x. [32] Zhang JY, Zeng Y, Chen JW, et al. miR-29a/b cluster suppresses high glucose-induced endothelial-mesenchymal transition in human retinal microvascular endothelial cells by targeting Notch2[J]. Exp Ther Med, 2019, 17(4): 3108-3116. doi:10.3892/etm.2019.7323. [33] Wang Y, Zeng ZS, Guan L, et al. GRHL2 induces liver fibrosis and intestinal mucosal barrier dysfunction in non-alcoholic fatty liver disease via microRNA-200 and the MAPK pathway[J]. J Cell Mol Med, 2020, 24(11): 6107-6119. doi:10.1111/jcmm.15212. [34] Stemmler MP, Eccles RL, Brabletz S, et al. Non-redundant functions of EMT transcription factors[J]. Nat Cell Biol, 2019, 21(1): 102-112. doi:10.1038/s41556-018-0196-y. [35] Shi C, Rao C, Sun C, et al. miR-29s function as tumor suppressors in gliomas by targeting TRAF4 and predict patient prognosis[J]. Cell Death Dis, 2018, 9(11): 1078. doi:10.1038/s41419-018-1092-x. [36] Koshizuka K, Kikkawa N, Hanazawa T, et al. Inhibition of integrin β1-mediated oncogenic signalling by the antitumor microRNA-29 family in head and neck squamous cell carcinoma[J]. Oncotarget, 2018, 9(3): 3663-3676. doi:10.18632/oncotarget.23194. [37] Manikandan M, Deva Magendhra Rao AK, Arunkumar G, et al. Oral squamous cell carcinoma: microRNA expression profiling and integrative analyses for elucidation of tumourigenesis mechanism[J]. Mol Cancer, 2016, 15: 28. doi:10.1186/s12943-016-0512-8. [38] Kurihara-Shimomura M, Sasahira T, Shimomura H, et al. The oncogenic activity of miR-29b-1-5p induces the epithelial-mesenchymal transition in oral squamous cell carcinoma[J]. J Clin Med, 2019, 8(2): 273. doi:10.3390/jcm8020273. [39] Duhachek-Muggy S, Zolkiewska A. ADAM12-L is a direct target of the miR-29 and miR-200 families in breast cancer[J]. BMC Cancer, 2015, 15: 93. doi:10.1186/s12885-015-1108-1. [40] Drago-Ferrante R, Pentimalli F, Carlisi D, et al. Suppressive role exerted by microRNA-29b-1-5p in triple negative breast cancer through SPIN1 regulation[J]. Oncotarget, 2017, 8(17): 28939-28958. doi:10.18632/oncotarget.15960. [41] To SKY, Mak ASC, Eva Fung YM, et al. Β-catenin downregulates Dicer to promote ovarian cancer metastasis[J]. Oncogene, 2017, 36(43): 5927-5938. doi:10.1038/onc.2017.185. [42] Yuan L, Zhou C, Lu YX, et al. IFN-γ-mediated IRF1/miR-29b feedback loop suppresses colorectal cancer cell growth and metastasis by repressing IGF1[J]. Cancer Lett, 2015, 359(1): 136-147. doi:10.1016/j.canlet.2015.01.003. [43] Leng Y, Chen ZX, Ding H, et al. Overexpression of microRNA-29b inhibits epithelial-mesenchymal transition and angiogenesis of colorectal cancer through the ETV4/ERK/EGFR axis[J]. Cancer Cell Int, 2021, 21(1): 17. doi:10.1186/s12935-020-01700-2. [44] Musavi Shenas SMH, Mansoori B, Mohammadi A, et al. SiRNA-mediated silencing of Snail-1 induces apoptosis and alters micro RNA expression in human urinary bladder cancer cell line[J]. Artif Cells Nanomed Biotechnol, 2017, 45(5): 969-974. doi:10.1080/21691401.2016.1198361. [45] Lv M, Zhong ZY, Huang MG, et al. lncRNA H19 regulates epithelial-mesenchymal transition and metastasis of bladder cancer by miR-29b-3p as competing endogenous RNA[J]. Biochim Biophys Acta Mol Cell Res, 2017, 1864(10): 1887-1899. doi:10.1016/j.bbamcr.2017.08.001. |
[1] | HUANG Danyi, ZHANG Ting,CHEN Jing, ZHANG Wei. Progress of research regarding the role of the epithelial barrier in chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 78-83. |
[2] | ZHANG Yaqi, LIU Huimin, CAO Linman, WANG Ziyu, LIN Xu, LI Yanping, XUE Gang, WU Jingfang. Expression and significance of the MAPK,PI3K-AKT,NF-κB pathways of allergic rhinitis in mice [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 254-259. |
[3] | LIU Yong, YUAN Cunli, CAO Hui, ZHENG Chengcai, CHAO Fang, XU Fenglei. CHD1L promotes proliferation, invasion and metastasis of laryngeal squamous cell carcinoma cells by EMT [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 32-39. |
[4] | LI Guobin, ZHANG Zhancheng, WANG Xinyan. Up-regulation of miR-200b may inhibit epithelial mesenchymal transition process to prevent the proliferation, migration, and invasion of human laryngeal cancer Hep-2 cells [J]. J Otolaryngol Ophthalmol Shandong Univ, 2018, 32(4): 53-57. |
[5] | WANG Hui, WEN Yan, YAN Li, YU Xiaoming, NING Hong. The effect of transforming growth factor-β1 on epithelial-mesenchymal transition in human lens epithelial cells. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(4): 76-79. |
[6] | GUO Zhi-juan1, LI Pei-hua1, ZHANG Xiao-wen2. Prognostic significance of epithelial-mesenchymal transition state in patients with chronic sinusitis treated under endoscopy [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2014, 28(1): 34-38. |
|