Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2022, Vol. 36 ›› Issue (2): 139-143.doi: 10.6040/j.issn.1673-3770.0.2021.052
Previous Articles Next Articles
YAO Zhouzhou
CLC Number:
[1] Lim SM, Mohamad Hanif EA, Chin SF. Is targeting autophagy mechanism in cancer a good approach? The possible double-edge sword effect[J]. Cell Biosci, 2021, 11(1): 56. doi:10.1186/s13578-021-00570-z. [2] Xu DW, Zhang GQ, Wang ZW, et al. Autophagy in tumorigenesis and cancer treatment[J]. Asian Pac J Cancer Prev, 2015, 16(6): 2167-2175. doi:10.7314/apjcp.2015.16.6.2167. [3] Linder B, Kögel D. Autophagy in Cancer Cell Death[J]. Biology, 2019, 8(4): 82. doi: 10.3390/biology8040082. [4] Bhagya N, Chandrashekar KR. Tetrandrine: a molecule of wide bioactivity[J]. Phytochemistry, 2016, 125: 5-13. doi:10.1016/j.phytochem.2016.02.005. [5] Li X, Wu ZX, He B, et al. Tetrandrine alleviates symptoms of rheumatoid arthritis in rats by regulating the expression of cyclooxygenase-2 and inflammatory factors[J]. Exp Ther Med, 2018, 16(3): 2670-2676. doi:10.3892/etm.2018.6498. [6] Li X, Jin Q, Wu YL, et al. Tetrandrine regulates hepatic stellate cell activation via TAK1 and NF-κB signaling[J]. Int Immunopharmacol, 2016, 36: 263-270. doi:10.1016/j.intimp.2016.04.039. [7] Luan F, He XR, Zeng N. Tetrandrine: a review of its anticancer potentials, clinical settings, pharmacokinetics and drug delivery systems[J]. J Pharm Pharmacol, 2020, 72(11): 1491-1512. doi:10.1111/jphp.13339. [8] Wang HQ, Liu T, Li L, et al. Tetrandrine is a potent cell autophagy agonist via activated intracellular reactive oxygen species[J]. Cell Biosci, 2015, 5: 4. doi:10.1186/2045-3701-5-4. [9] Jh F, Yh F. Tetrandine: pharmacology and clinical usefulness[J]. Chin Pharma, 1996, 31: 454-456. [10] Qiu W, Su M, Xie F, et al. Tetrandrine blocks autophagic flux and induces apoptosis via energetic impairment in cancer cells[J]. Cell Death Dis, 2014, 5: e1123. doi:10.1038/cddis.2014.84. [11] Li W, He PC, Huang YG, et al. Selective autophagy of intracellular organelles: recent research advances[J]. Theranostics, 2021, 11(1): 222-256. doi:10.7150/thno.49860. [12] Cuomo F, Altucci L, Cobellis G. Autophagy function and dysfunction: potential drugs as anti-cancer therapy[J]. Cancers(Basel), 2019, 11(10): E1465. doi:10.3390/cancers11101465. [13] Janku F, McConkey DJ, Hong DS, et al. Autophagy as a target for anticancer therapy[J]. Nat Rev Clin Oncol, 2011, 8(9): 528-539. doi:10.1038/nrclinonc.2011.71. [14] Wu LC, Wang GZ, Liu SB, et al. Synthesis and biological evaluation of matrine derivatives containing benzo-α-pyrone structure as potent anti-lung cancer agents[J]. Sci Rep, 2016, 6: 35918. doi:10.1038/srep35918. [15] Xu HD, Qin ZH. Beclin 1, bcl-2 and autophagy[J]. Adv Exp Med Biol, 2019, 1206: 109-126. doi:10.1007/978-981-15-0602-4_5. [16] Thongchot S, Vidoni C, Ferraresi A, et al. Dihydroartemisinin induces apoptosis and autophagy-dependent cell death in cholangiocarcinoma through a DAPK1-BECLIN1 pathway[J]. Mol Carcinog, 2018, 57(12): 1735-1750. doi:10.1002/mc.22893. [17] Li HY, Zhang J, Sun LL, et al. Celastrol induces apoptosis and autophagy via the ROS/JNK signaling pathway in human osteosarcoma cells: an in vitro and in vivo study[J]. Cell Death Dis, 2015, 6: e1604. doi:10.1038/cddis.2014.543. [18] Cagnol S, Chambard JC. ERK and cell death: mechanisms of ERK-induced cell death: apoptosis, autophagy and senescence[J]. Febs J, 2010, 277(1): 2-21. doi:10.1111/j.1742-4658.2009.07366.x. [19] Dikic I, Elazar Z. Mechanism and medical implications of mammalian autophagy[J]. Nat Rev Mol Cell Biol, 2018, 19(6): 349-364. doi:10.1038/s41580-018-0003-4. [20] Feng YC, He D, Yao ZY, et al. The machinery of macroautophagy[J]. Cell Res, 2014, 24(1): 24-41. doi:10.1038/cr.2013.168. [21] Huang AC, Lien JC, Lin MW, et al. Tetrandrine induces cell death in SAS human oral cancer cells through caspase activation-dependent apoptosis and LC3-I and LC3-II activation-dependent autophagy[J]. Int J Oncol, 2013, 43(2): 485-494. doi:10.3892/ijo.2013.1952. [22] Yu FS, Yu CS, Chen JC, et al. Tetrandrine induces apoptosis Via caspase-8, -9, and -3 and poly(ADP ribose)polymerase dependent pathways and autophagy through beclin-1/ LC3-I, II signaling pathways in human oral cancer HSC-3 cells[J]. Environ Toxicol, 2016, 31(4): 395-406. doi:10.1002/tox.22053. [23] Liu CY, Gong K, Mao X, et al. Tetrandrine induces apoptosis by activating reactive oxygen species and repressing Akt activity in human hepatocellular carcinoma[J]. Int J Cancer, 2011, 129(6): 1519-1531. doi:10.1002/ijc.25817. [24] Gong K, Chen C, Zhan Y, et al. Autophagy-related gene 7(ATG7)and reactive oxygen species/extracellular signal-regulated kinase regulate tetrandrine-induced autophagy in human hepatocellular carcinoma[J]. J Biol Chem, 2012, 287(42): 35576-35588. doi:10.1074/jbc.M112.370585. [25] Kou B, Liu W, Xu X, et al. Autophagy induction enhances tetrandrine-induced apoptosis via the AMPK/mTOR pathway in human bladder cancer cells[J]. Oncol Rep, 2017, 38(5): 3137-3143. doi:10.3892/or.2017.5988. [26] Bai XY, Liu YG, Song W, et al. Anticancer activity of tetrandrine by inducing pro-death apoptosis and autophagy in human gastric cancer cells[J]. J Pharm Pharmacol, 2018, 70(8): 1048-1058. doi:10.1111/jphp.12935. [27] de Thé H. Differentiation therapy revisited[J]. Nat Rev Cancer, 2018, 18(2): 117-127. doi:10.1038/nrc.2017.103. [28] Chen ZH, Wang WT, Huang W, et al. The lncRNA HOTAIRM1 regulates the degradation of PML-RARA oncoprotein and myeloid cell differentiation by enhancing the autophagy pathway[J]. Cell Death Differ, 2017, 24(2): 212-224. doi:10.1038/cdd.2016.111. [29] Wu GX, Liu T, Li H, et al. C-MYC and reactive oxygen species play roles in tetrandrine-induced leukemia differentiation[J]. Cell Death Dis, 2018, 9(5): 473. doi:10.1038/s41419-018-0498-9. [30] Liu T, Men Q, Wu G, et al. Tetrandrine induces autophagy and differentiation by activating ROS and Notch1 signaling in leukemia cells[J]. Oncotarget, 2015, 6(10): 7992-8006. doi:10.18632/oncotarget.3505. [31] Liu T, Zhang ZX, Yu CJ, et al. Tetrandrine antagonizes acute megakaryoblastic leukaemia growth by forcing autophagy-mediated differentiation[J]. Br J Pharmacol, 2017, 174(23): 4308-4328. doi:10.1111/bph.14031. [32] 王文萍. 实用肿瘤转移学[M]. 沈阳: 辽宁科学技术出版社, 2003. [33] Babaei G, Aziz SG, Jaghi NZZ. EMT, cancer stem cells and autophagy; The three main axes of metastasis[J]. Biomedecine Pharmacother, 2021, 133: 110909. doi:10.1016/j.biopha.2020.110909. [34] Zhang J, Yang ZZ, Xie L, et al. Statins, autophagy and cancer metastasis[J]. Int J Biochem Cell Biol, 2013, 45(3): 745-752. doi:10.1016/j.biocel.2012.11.001. [35] Zhang ZX, Liu T, Yu M, et al. The plant alkaloid tetrandrine inhibits metastasis via autophagy-dependent Wnt/β-catenin and metastatic tumor antigen 1 signaling in human liver cancer cells[J]. J Exp Clin Cancer Res, 2018, 37(1): 7. doi:10.1186/s13046-018-0678-6. [36] Chen YR, Li PC, Yang S, et al. Tetrandrine enhances the anticancer effects of arsenic trioxide in vitro[J]. Int J Clin Pharmacol Ther, 2014, 52(5): 416-424. doi:10.5414/CP201939. [37] Yu M, Liu T, Chen YC, et al. Combination therapy with protein kinase inhibitor H89 and Tetrandrine elicits enhanced synergistic antitumor efficacy[J]. J Exp Clin Cancer Res, 2018, 37(1): 114. doi:10.1186/s13046-018-0779-2. [38] Yao MJ, Yuan B, Wang X, et al. Synergistic cytotoxic effects of arsenite and tetrandrine in human breast cancer cell line MCF-7[J]. Int J Oncol, 2017, 51(2): 587-598. doi:10.3892/ijo.2017.4052. [39] Yu BW, Yuan B, Li JZ, et al. JNK and autophagy independently contributed to cytotoxicity of arsenite combined with tetrandrine via modulating cell cycle progression in human breast cancer cells[J]. Front Pharmacol, 2020, 11: 1087. doi:10.3389/fphar.2020.01087. [40] Mei LF, Chen YC, Wang ZM, et al. Synergistic anti-tumour effects of tetrandrine and chloroquine combination therapy in human cancer: a potential antagonistic role for p21[J]. Br J Pharmacol, 2015, 172(9): 2232-2245. doi:10.1111/bph.13045. [41] Kimura T, Takabatake Y, Takahashi A, et al. Chloroquine in cancer therapy: a double-edged sword of autophagy[J]. Cancer Res, 2013, 73(1): 3-7. doi:10.1158/0008-5472.CAN-12-2464. [42] Sato E, Ohta S, Kawakami K, et al. Tetrandrine increases the sensitivity of human lung adenocarcinoma PC14 cells to gefitinib by lysosomal inhibition[J]. Anticancer Res, 2019, 39(12): 6585-6593. doi:10.21873/anticanres.13874. [43] Wang YT, Yue W, Lang HY, et al. Resuming sensitivity of tamoxifen-resistant breast cancer cells to tamoxifen by tetrandrine[J]. Integr Cancer Ther, 2021, 20: 1534735421996822. doi:10.1177/1534735421996822. [44] Hu SC, Yang J, Chen C, et al. Design, synthesis of novel tetrandrine-14-l-amino acid and tetrandrine-14-l-amino acid-urea derivatives as potential anti-cancer agents[J]. Molecules, 2020, 25(7): 1738. doi:10.3390/molecules25071738. [45] Schütz R, Müller M, Geisslinger F, et al. Synthesis, biological evaluation and toxicity of novel tetrandrine analogues[J]. Eur J Med Chem, 2020, 207: 112810. doi:10.1016/j.ejmech.2020.112810. [46] Que X, Su J, Guo PC, et al. Study on preparation, characterization and multidrug resistance reversal of red blood cell membrane-camouflaged tetrandrine-loaded PLGA nanoparticles[J]. Drug Deliv, 2019, 26(1): 199-207. doi:10.1080/10717544.2019.1573861. [47] Wang KP, Hu HP, Zhang Q, et al. Synthesis, purification, and anticancer effect of magnetic Fe3O4-loaded poly(lactic-co-glycolic)nanoparticles of the natural drug tetrandrine[J]. J Microencapsul, 2019, 36(4): 356-370. doi:10.1080/02652048.2019.1631403. [48] Li JJ, Jin X, Zhang LL, et al. Comparison of different chitosan lipid nanoparticles for improved ophthalmic tetrandrine delivery: formulation, characterization, pharmacokinetic and molecular dynamics simulation[J]. J Pharm Sci, 2020, 109(12): 3625-3635. doi:10.1016/j.xphs.2020.09.010. [49] Liu CX, Lv L, Guo W, et al. Self-nanoemulsifying drug delivery system of tetrandrine for improved bioavailability: physicochemical characterization and pharmacokinetic study[J]. Biomed Res Int, 2018, 2018: 6763057. doi:10.1155/2018/6763057. [50] Guo KF, Cang J. A novel tetrandrine-loaded chitosan microsphere: characterization and in vivo evaluation[J]. Drug Des Devel Ther, 2016, 10: 1291-1298. doi:10.2147/DDDT.S103169. |
[1] | SU Jie, YANG Fuyu, LI Meng, CHEN Huiru, JIANG Lisheng, WANG Lixiang. GLP-1 protected the diabetic retinopathy through induction of autophagy in rats [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 30-34. |
[2] | Ruibao LIU,Ying ZHAO,Minglu GUO,Yu DUAN,Yanxia WU,Xuejing LU. Autophagy and its research progress in glaucoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(5): 158-161. |
[3] | SU Jie, AI Xin, MA Chunmei, YANG Fuyu, HUANG Shuai. Relationship between acute intraocular hypertension and lateral geniculate neuron autophagy and apoptosis in rats [J]. J Otolaryngol Ophthalmol Shandong Univ, 2018, 32(4): 68-71. |
[4] | LIU Zhiyan. Borderline thyroid tumor in the new World Health Organization classification of 2017. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(6): 1-4. |
[5] | ZHANG Jinling, CAI Xiaolan, LI Xuezhong, FENG Xin, QI Junjun, LIU Dayu. Study of autophagy-related genes atg3, ambra1 expressions in chronic rhinosinusitis without or with nasal polyps accompanied with asthma. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2016, 30(2): 50-55. |
[6] | HU Juan-juan, HONG Yu-ming. Diagnosis and treatment of parapharyngeal space neoplasms [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2014, 28(5): 85-90. |
[7] | LIU Lei,TANG Wei,LIN Jun-wu,LI Hou-jie,WANG Xu-zeng . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(4): 338-340 . |
|