Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2022, Vol. 36 ›› Issue (2): 144-150.doi: 10.6040/j.issn.1673-3770.0.2020.484
Previous Articles Next Articles
DI Yu,LI Ying
CLC Number:
[1] Periman LM, Perez VL, Saban DR, et al. The immunological basis of dry eye disease and current topical treatment options[J]. J Ocul Pharmacol Ther, 2020, 36(3): 137-146. doi:10.1089/jop.2019.0060. [2] Craig JP, Nichols KK, Akpek EK, et al. TFOS DEWS II definition and classification report[J]. Ocul Surf, 2017, 15(3): 276-283. doi:10.1016/j.jtos.2017.05.008. [3] Stern ME, Schaumburg CS, Pflugfelder SC. Dry eye as a mucosal autoimmune disease[J]. Int Rev Immunol, 2013, 32(1): 19-41. doi:10.3109/08830185.2012.748052. [4] 孙子雯, 崔洪玮, 孙喜灵, 等. 干眼病的病因、发病机制及治疗进展[J]. 山东大学耳鼻喉眼学报, 2019, 3(33):159-166. doi: 10.6040/j.issn.1673-3770.0.2018.411. SUN Ziwen, CUI Hongwei, SUN Xiling, et al. Etiology, pathogenesis, and management of dry eye[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 3(33):159-166. doi: 10.6040/j.issn.1673-3770.0.2018.411. [5] Yagci A, Gurdal C. The role and treatment of inflammation in dry eye disease[J]. Int Ophthalmol, 2014, 34(6): 1291-1301. doi:10.1007/s10792-014-9969-x. [6] 高雅, 李冰, 陈研遐, 等. 白介素1β在干眼患者眼表的表达[J]. 中华眼视光学与视觉科学杂志, 2014, 16(4): 228-232. doi: 10.3760/cma.j.issn.1674-845X.2014.04.009. GAO Ya, LI Bing, CHEN Yanxia, et al. A study of the expression of IL-1 beta on the ocular surface in dry eye patients[J]. Chinese Journal of Optometry & Ophthalmology, 2014, 16(4): 228-232. doi: 10.3760/cma.j.issn.1674-845X.2014.04.009. [7] Benitez J, Cantu-Dibildox J, Sanz-González SM, et al. Cytokine expression in tears of patients with Glaucoma or dry eye disease: a prospective, observational cohort study[J]. Eur J Ophthalmol, 2019, 29(4): 437-443. doi:10.1177/1120672118795399. [8] Landsend ECS, Utheim A, Pedersen HR, et al. The level of inflammatory tear cytokines is elevated in congenital aniridia and associated with meibomian gland dysfunction[J]. Invest Ophthalmol Vis Sci, 2018, 59(5): 2197-2204. doi:10.1167/iovs.18-24027. [9] Lee H, Chung B, Kim KS, et al. Effects of topical loteprednol etabonate on tear cytokines and clinical outcomes in moderate and severe meibomian gland dysfunction: randomized clinical trial[J]. Am J Ophthalmol, 2014, 158(6): 1172-1183.e1. doi:10.1016/j.ajo.2014.08.015. [10] Bi Y, Yang R. Direct and indirect regulatory mechanisms in TH17 cell differentiation and functions[J]. Scand J Immunol, 2012, 75(6): 543-552. doi:10.1111/j.1365-3083.2012.02686.x. [11] Higuchi A, Kawakita T, Tsubota K. IL-6 induction in desiccated corneal epithelium in vitro and in vivo[J]. Mol Vis, 2011, 17: 2400-2406. doi: 10.2214/ajr.142.6.1205. [12] Na KS, Mok JW, Kim JY, et al. Correlations between tear cytokines, chemokines, and soluble receptors and clinical severity of dry eye disease[J]. Invest Ophthalmol Vis Sci, 2012, 53(9): 5443-5450. doi:10.1167/iovs.11-9417. [13] McDonnell PJ, Pflugfelder SC, Stern ME, et al. Study design and baseline findings from the progression of ocular findings(PROOF)natural history study of dry eye[J]. BMC Ophthalmol, 2017, 17(1): 265. doi:10.1186/s12886-017-0646-5. [14] Jung JW, Han SJ, Nam SM, et al. Meibomian gland dysfunction and tear cytokines after cataract surgery according to preoperative meibomian gland status[J]. Clin Exp Ophthalmol, 2016, 44(7): 555-562. doi:10.1111/ceo.12744. [15] De Paiva CS, Chotikavanich S, Pangelinan SB, et al. IL-17 disrupts corneal barrier following desiccating stress[J]. Mucosal Immunol, 2009, 2(3): 243-253. doi:10.1038/mi.2009.5. [16] Chen Y, Chauhan SK, Lee HS, et al. Chronic dry eye disease is principally mediated by effector memory Th17 cells[J]. Mucosal Immunol, 2014, 7(1): 38-45. doi:10.1038/mi.2013.20. [17] Lee SY, Han SJ, Nam SM, et al. Analysis of tear cytokines and clinical correlations in sjögren syndrome dry eye patients and non-sjögren syndrome dry eye patients[J]. Am J Ophthalmol, 2013, 156(2): 247-253. doi:10.1016/j.ajo.2013.04.003. [18] Mrugacz M, Ostrowska L, Bryl A, et al. Pro-inflammatory cytokines associated with clinical severity of dry eye disease of patients with depression[J]. Adv Med Sci, 2017, 62(2): 338-344. doi:10.1016/j.advms.2017.03.003. [19] Tong L, Beuerman R, Simonyi S, et al. Effects of punctal occlusion on clinical signs and symptoms and on tear cytokine levels in patients with dry eye[J]. Ocul Surf, 2016, 14(2): 233-241. doi:10.1016/j.jtos.2015.12.004. [20] Pflugfelder SC, De Paiva CS, Moore QL, et al. Aqueous tear deficiency increases conjunctival interferon-γ(IFN-γ)expression and goblet cell loss[J]. Invest Ophthalmol Vis Sci, 2015, 56(12): 7545-7550. doi:10.1167/iovs.15-17627. [21] Jackson DC, Zeng W, Wong CY, et al. Tear interferon-gamma as a biomarker for evaporative dry eye disease[J]. Invest Ophthalmol Vis Sci, 2016, 57(11): 4824-4830. doi:10.1167/iovs.16-19757. [22] Chotikavanich S, de Paiva CS, Li DQ, et al. Production and activity of matrix metalloproteinase-9 on the ocular surface increase in dysfunctional tear syndrome[J]. Invest Ophthalmol Vis Sci, 2009, 50(7): 3203-3209. doi:10.1167/iovs.08-2476. [23] Yang S, Lee HJ, Kim DY, et al. The use of conjunctival staining to measure ocular surface inflammation in patients with dry eye[J]. Cornea, 2019, 38(6): 698-705. doi:10.1097/ico.0000000000001916. [24] Messmer EM, von Lindenfels V, Garbe A, et al. Matrix metalloproteinase 9 testing in dry eye disease using a commercially available point-of-care immunoassay[J]. Ophthalmology, 2016, 123(11): 2300-2308. doi:10.1016/j.ophtha.2016.07.028. [25] Schargus M, Ivanova S, Kakkassery V, et al. Correlation of tear film osmolarity and 2 different MMP-9 tests with common dry eye tests in a cohort of non-dry eye patients[J]. Cornea, 2015, 34(7): 739-744. doi:10.1097/ico.0000000000000449. [26] Enríquez-de-Salamanca A, Castellanos E, Stern ME, et al. Tear cytokine and chemokine analysis and clinical correlations in evaporative-type dry eye disease[J]. Mol Vis, 2010, 16: 862-873. PMID: 20508732. [27] Massingale ML, Li XH, Vallabhajosyula M, et al. Analysis of inflammatory cytokines in the tears of dry eye patients[J]. Cornea, 2009, 28(9): 1023-1027. doi:10.1097/ico.0b013e3181a16578. [28] Choi W, Li ZR, Oh HJ, et al. Expression of CCR5 and its ligands CCL3, -4, and -5 in the tear film and ocular surface of patients with dry eye disease[J]. Curr Eye Res, 2012, 37(1): 12-17. doi:10.3109/02713683.2011.622852. [29] Nicolle P, Liang H, Reboussin E, et al. Proinflammatory markers, chemokines, and enkephalin in patients suffering from dry eye disease[J]. Int J Mol Sci, 2018, 19(4): 1221. doi:10.3390/ijms19041221. [30] Wang T, Li WH, Cheng HH, et al. The important role of the chemokine axis CCR7-CCL19 and CCR7-CCL21 in the pathophysiology of the immuno-inflammatory response in dry eye disease[J]. Ocular Immunol Inflamm, 2019: 1-12. doi:10.1080/09273948.2019.1674891. [31] Lefort CT, Ley K. Neutrophil arrest by LFA-1 activation[J]. Front Immunol, 2012, 3: 157. doi:10.3389/fimmu.2012.00157. [32] Hogg N, Laschinger M, Giles K, et al. T-cell integrins: more than just sticking points[J]. J Cell Sci, 2003, 116(Pt 23): 4695-4705. doi:10.1242/jcs.00876. [33] Liu M, Gao H, Wang T, et al. An essential role for dendritic cells in vernal keratoconjunctivitis: analysis by laser scanning confocal microscopy[J]. Clin Exp Allergy, 2014, 44(3): 362-370. doi:10.1111/cea.12264. [34] Hamrah P, Huq SO, Liu Y, et al. Corneal immunity is mediated by heterogeneous population of antigen-presenting cells[J]. J Leukoc Biol, 2003, 74(2): 172-178. doi:10.1189/jlb.1102544. [35] El Annan J, Chauhan SK, Ecoiffier T, et al. Characterization of effector T cells in dry eye disease[J]. Invest Ophthalmol Vis Sci, 2009, 50(8): 3802-3807. doi:10.1167/iovs.08-2417. [36] De Paiva CS, Villarreal AL, Corrales RM, et al. Dry eye-induced conjunctival epithelial squamous Metaplasia is modulated by interferon-gamma[J]. Invest Ophthalmol Vis Sci, 2007, 48(6): 2553-2560. doi:10.1167/iovs.07-0069. [37] Chauhan SK, El Annan J, Ecoiffier T, et al. Autoimmunity in dry eye is due to resistance of Th17 to Treg suppression[J]. J Immunol, 2009, 182(3): 1247-1252. doi:10.4049/jimmunol.182.3.1247. [38] von Knethen A, Heinicke U, Weigert A, et al. Histone deacetylation inhibitors as modulators of regulatory T cells[J]. Int J Mol Sci, 2020, 21(7): 2356. doi:10.3390/ijms21072356. [39] Ratay ML, Balmert SC, Bassin EJ, et al. Controlled release of an HDAC inhibitor for reduction of inflammation in dry eye disease[J]. Acta Biomater, 2018, 71: 261-270. doi:10.1016/j.actbio.2018.03.002. [40] 蔡丽萍, 张宏. 炎症免疫相关信号通路在干眼发病机制中的研究进展[J]. 国际眼科杂志, 2016, 16(6): 1084-1088. doi:10.3980/j.issn.1672-5123.2016.6.20. LIPING Cai, HONG Zhang. Research progress on inflammatory immunity related signaling pathway for the pathogenesis of dry eye[J]. Int Eye Sci, 2016, 16(6): 1084-1088. doi:10.3980/j.issn.1672-5123.2016.6.20. [41] Hattori T, Takahashi H, Dana R. Novel insights into the immunoregulatory function and localization of dendritic cells[J]. Cornea, 2016, 35(Suppl 1): S49-S54. doi:10.1097/ico.0000000000001005. [42] Pflugfelder SC, Corrales RM, de Paiva CS. T helper cytokines in dry eye disease[J]. Exp Eye Res, 2013, 117: 118-125. doi:10.1016/j.exer.2013.08.013. [43] Pflugfelder SC, Geerling G, Kinoshita S, et al. Management and therapy of dry eye disease: Report of the management and therapy subcommittee of the international Dry Eye WorkShop(2007)[C] //2007, 5: 163-178. [44] Pinto-Fraga J, Lopez-Miguel A, Gonzalez-Garcia MJ, et al. Topical fluorometholone protects the ocular surface of dry eye patients from desiccating stress: a randomized controlled clinical trial[J]. Ophthalmology, 2016, 123(1):141-53. doi: 10.1016/j.ophtha.2015.09.029. [45] Jung HH, Ji YS, Sung MS, et al. Long-term outcome of treatment with topical corticosteroids for severe dry eye associated with sjögren's syndrome[J]. Chonnam Med J, 2015, 51(1): 26-32. doi:10.4068/cmj.2015.51.1.26. [46] Sall K, Stevenson OD, Mundorf TK, et al. Two multicenter, randomized studies of the efficacy and safety of cyclosporine ophthalmic emulsion in moderate to severe dry eye disease[J]. Ophthalmology, 2000, 107(4): 631-639. doi:10.1016/S0161-6420(99)00176-1. [47] Ji YW, Kim HM, Ryu SY, et al. Changes in human tear proteome following topical treatment of dry eye disease: cyclosporine A versus diquafosol tetrasodium[J]. Invest Ophthalmol Vis Sci, 2019, 60(15): 5035-5044. doi:10.1167/iovs.19-27872. [48] Daull P, Barabino S, Feraille L, et al. Modulation of inflammation-related genes in the cornea of a mouse model of dry eye upon treatment with cyclosporine eye drops[J]. Curr Eye Res, 2019, 44(5): 476-485. doi:10.1080/02713683.2018.1563197. [49] Guimaraes de Souza R, Yu Z, Stern ME, et al. Suppression of Th1-mediated keratoconjunctivitis sicca by lifitegrast[J]. J Ocul Pharmacol Ther, 2018, 34(7): 543-549. doi:10.1089/jop.2018.0047. [50] Haber SL, Benson V, Buckway CJ, et al. Lifitegrast: a novel drug for patients with dry eye disease[J]. Ther Adv Ophthalmol, 2019, 11: 2515841419870366. doi:10.1177/2515841419870366. [51] Semba CP, Torkildsen GL, Lonsdale JD, et al. A phase 2 randomized, double-masked, placebo-controlled study of a novel integrin antagonist(SAR 1118)for the treatment of dry eye[J]. Am J Ophthalmol, 2012, 153(6): 1050-1060.e1. doi:10.1016/j.ajo.2011.11.003. [52] Holland EJ, Luchs J, Karpecki PM, et al. Lifitegrast for the treatment of dry eye disease: results of a phase Ⅲ, randomized, double-masked, placebo-controlled trial(OPUS-3)[J]. Ophthalmology, 2017, 124(1): 53-60. doi:10.1016/j.ophtha.2016.09.025. [53] Kim CE, Kleinman HK, Sosne G, et al. RGN-259(thymosin β4)improves clinically important dry eye efficacies in comparison with prescription drugs in a dry eye model[J]. Sci Rep, 2018, 8(1): 1-14. doi:10.1038/s41598-018-28861-5. [54] Sosne G, Dunn SP, Kim C. Thymosin β4 significantly improves signs and symptoms of severe dry eye in a phase 2 randomized trial[J]. Cornea, 2015, 34(5): 491-496. doi:10.1097/ico.0000000000000379. |
[1] | ZHANG YuOverview,QU YiGuidance. Research progress on the pathogenesis and control of ocular toxoplasmosis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 70-76. |
[2] | SONG QingOverview,SONG XichengGuidance. Research progress of anlotinib combination therapy in cancer treatment [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 106-112. |
[3] | ZHANG Keren, LEI Chunyan, ZHANG Meixia. Floppy eyelid syndrome associated with obstructive sleep apnea: a case report [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 125-128. |
[4] | SHI Anni, ZHANG Jiajia, BAI Peng, ZHANG Chongyang. Analysis of a therapeutic modality for sudden deafness utilizing neck acupuncture comprising seven lines of treatment [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(4): 103-107. |
[5] | XIONG Panhui, SHEN Yang,YANG Yucheng. Advancements in the diagnosis and treatment of chronic sinusitis based on phenotypes and endotypes [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 15-19. |
[6] | LIANG Xu,SHI Li. Research progress in biologic targeted drug therapy for chronic sinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 30-35. |
[7] | GU Yu, WAN Xin,XIAO Zi'an. The interaction between neutrophils and eosinophils in chronic rhinosinusitis and the implications on treatment options [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 56-63. |
[8] | ZENG Xianting, WANG Guangke, SUN Zhanwei, WU Tianyi, LI Shichao, WANG Weiwei. Postoperative efficacy of proton pump inhibitor in the treatment of difficult-to-treat rhinosinusitis with laryngopharyngeal reflux [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 189-194. |
[9] | ZHANG Taoran, WANG Wei, LI Mingming, HUANG Yingxiang. Subfoveal choroidal thickness changes following intravitreal ranibizumab treatment in choroidal neovascularization due to pathological myopia [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 68-71. |
[10] | BAI Lingling, WANG Hongxing, WANG Lichun. Effect of absorbable lacrimal plug combined with artificial tears on the treatment of moderate to severe dry eye and its impact on vision-related quality of life [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 78-82. |
[11] | HUA Hongli, LI Song,TAO Zezhang. Research progress of artificial intelligence in the diagnosis and treatment of nasopharyngeal carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 113-119. |
[12] | CHEN Kun, LU Hui, HUANG Qi, LI Lei, MENG Guozhen, YANG Jun, HOU Dongming. Clinical diagnosis and treatment of congenital nasal sinus mass in children [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(1): 81-85. |
[13] | ZENG Bin, LÜ Dan, REN Jia, HU Juanjuan, YU Lingyu, LU Huan, YANG Hui. Application of laryngeal microsurgery in severe neonatal upper airway obstruction [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(1): 95-99. |
[14] | ZHAO Xinghe, FAN Mingyue, DOU Xunwu, JIA Guangbiao. Primary large B-cell lymphoma of tonsil in children: a case report and document review [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(1): 120-124. |
[15] | LU Xiaoyan, WEN Shuxin. Advances in the treatment of congenital choanal atresia [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(1): 138-142. |
|