Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2024, Vol. 38 ›› Issue (5): 153-159.doi: 10.6040/j.issn.1673-3770.0.2024.084
• Review • Previous Articles
SHEN Jiaqi1, LI Xiaosa2, BI Yanlong1, ZHANG Jingfa2,3
CLC Number:
[1] 王娇娇, 李苗. 糖尿病视网膜病变的机制和细胞模型研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 93-99. doi:10.6040/j.issn.1673-3770.0.2021.203 WANG Jiaojiao, LI Miao. Progress in diabetic retinopathy mechanisms and cellular models[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 93-99. doi:10.6040/j.issn.1673-3770.0.2021.203 [2] Yau JWY, Rogers SL, Kawasaki R, et al. Global prevalence and major risk factors of diabetic retinopathy[J]. Diabetes Care, 2012, 35(3): 556-564. doi:10.2337/dc11-1909 [3] Wells JA, Glassman AR, Ayala AR, et al. Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema: two-year results from a comparative effectiveness randomized clinical trial[J]. Ophthalmology, 2016, 123(6): 1351-1359. doi:10.1016/j.ophtha.2016.02.022 [4] Prince J, Kumar D, Ghosh A, et al. Surgical Management of Diabetic Macular Edema[J]. Curr Diab Rep,2023,23(6):119-125.doi:10.1007/s11892-023-01505-3 [5] Bressler NM, Beaulieu WT, Glassman AR, et al. Persistent macular thickening following intravitreous aflibercept, bevacizumab, or ranibizumab for central-involved diabetic macular edema with vision impairment: a secondary analysis of a randomized clinical trial[J]. JAMA Ophthalmol, 2018, 136(3): 257-269. doi:10.1001/jamaophthalmol.2017.6565 [6] Esteva A, Robicquet A, Ramsundar B, et al. A guide to deep learning in healthcare[J]. Nat Med, 2019, 25(1): 24-29. doi:10.1038/s41591-018-0316-z [7] Abràmoff MD, Lavin PT, Birch M, et al. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices[J]. NPJ Digit Med, 2018, 1: 39. doi:10.1038/s41746-018-0040-6 [8] 李治玺, 张健, 何明光. 人工智能初筛分流在大规模糖尿病视网膜病变筛查中的应用[J]. 中华医学杂志, 2020, 100(48): 3835-3840. doi:10.3760/cma.j.cn112137-20200901-02526 LI Zhixi, ZHANG Jian, HE Mingguang. Using artificial intelligence as an initial triage strategy in diabetic retinopathy screening program in China[J]. National Medical Journal of China, 2020, 100(48): 3835-3840. doi:10.3760/cma.j.cn112137-20200901-02526 [9] Sahlsten J, Jaskari J, Kivinen J, et al. Deep learning fundus image analysis for diabetic retinopathy and macular edema grading[J]. Sci Rep, 2019, 9(1): 10750. doi:10.1038/s41598-019-47181-w [10] Wang YT, Tadarati M, Wolfson Y, et al. Comparison of prevalence of diabetic macular edema based on monocular fundus photography vs optical coherence tomography[J]. JAMA Ophthalmol, 2016, 134(2): 222-228. doi:10.1001/jamaophthalmol.2015.5332 [11] Lim G, Bellemo V, Xie YC, et al. Different fundus imaging modalities and technical factors in AI screening for diabetic retinopathy: a review[J]. Eye Vis, 2020, 7: 21. doi:10.1186/s40662-020-00182-7 [12] Lam C, Wong YL, Tang ZQ, et al. Performance of artificial intelligence in detecting diabetic macular edema from fundus photography and optical coherence tomography images: a systematic review and meta-analysis[J]. Diabetes Care, 2024, 47(2): 304-319. doi:10.2337/dc23-0993 [13] Leal J, Luengo-Fernandez R, Stratton IM, et al. Cost-effectiveness of digital surveillance clinics with optical coherence tomography versus hospital eye service follow-up for patients with screen-positive maculopathy[J]. Eye, 2019, 33(4): 640-647. doi:10.1038/s41433-018-0297-7 [14] Varadarajan AV, Bavishi P, Ruamviboonsuk P, et al. Predicting optical coherence tomography-derived diabetic macular edema grades from fundus photographs using deep learning[J]. Nat Commun, 2020, 11(1): 130. doi:10.1038/s41467-019-13922-8 [15] Arcadu F, Benmansour F, Maunz A, et al. Deep learning predicts OCT measures of diabetic macular thickening from color fundus photographs[J]. Invest Ophthalmol Vis Sci, 2019, 60(4): 852-857. doi:10.1167/iovs.18-25634 [16] Schramm S, Dietzel A, Link D, et al. 3D retinal imaging and measurement using light field technology[J]. J Biomed Opt, 2021, 26(12): 126002. doi:10.1117/1.JBO.26.12.126002 [17] 中国医药教育协会智能医学专委会智能眼科学组, 国家重点研发计划"眼科多模态成像及人工智能诊疗系统的研发和应用"项目组. 基于眼底照相的糖尿病视网膜病变人工智能筛查系统应用指南[J]. 中华实验眼科杂志, 2019, 37(8): 593-598. doi:10.3760/cma.j.issn.2095-0160.2019.08.001 [18] Malerbi FK, Mendes G, Barboza N, et al. Diabetic macular edema screened by handheld smartphone-based retinal camera and artificial intelligence[J]. J Med Syst, 2021, 46(1): 8. doi:10.1007/s10916-021-01795-8 [19] 史雪辉, 张丛, 魏文斌. 关注糖尿病黄斑水肿的光学相干断层扫描分型及相关影像特征[J]. 中华眼科医学杂志(电子版),2021,11(1): 1-7. doi:10.3877/cma.j.issn.2095-2007.2021.01.001 SHI Xuehui, ZHANG Cong, WEI Wenbin. Pay attention to OCT-based classification and features of diabetic macular edema[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2021, 11(1): 1-7. doi:10.3877/cma.j.issn.2095-2007.2021.01.001 [20] Bhandari M, Shahi TB, Neupane A. Evaluating retinal disease diagnosis with an interpretable lightweight CNN model resistant to adversarial attacks[J]. J Imaging, 2023, 9(10): 219. doi:10.3390/jimaging9100219 [21] Tang FY, Wang X, Ran AR, et al. A multitask deep-learning system to classify diabetic macular edema for different optical coherence tomography devices: a multicenter analysis[J]. Diabetes Care, 2021, 44(9): 2078-2088. doi:10.2337/dc20-3064 [22] Wu QW, Zhang B, Hu YJ, et al. Detection of morphologic patterns of diabetic macular edema using a deep learning approach based on optical coherence tomography images[J]. Retina, 2021, 41(5): 1110-1117. doi:10.1097/IAE.0000000000002992 [23] Otani T, Kishi S, Maruyama Y. Patterns of diabetic macular edema with optical coherence tomography[J]. Am J Ophthalmol, 1999, 127(6): 688-693. doi:10.1016/s0002-9394(99)00033-1 [24] 田涛, 姚晓喜, 彭婧利, 等. 不同抗VEGF药物治疗糖尿病性黄斑水肿的疗效及其与OCT分型的关系[J]. 国际眼科杂志, 2023, 23(6): 991-995. doi:10.3980/j.issn.1672-5123.2023.6.22 TIAN Tao, YAO Xiaoxi, PENG Jingli, et al. Efficacy of different anti - vascular endothelial growth factor drugs in the treatment of diabetic macular edema and their relationship with optical coherence tomography classification[J]. International Eye Science, 2023, 23(6): 991-995. doi:10.3980/j.issn.1672-5123.2023.6.22 [25] Panozzo G, Cicinelli MV, Augustin AJ, et al. An optical coherence tomography-based grading of diabetic maculopathy proposed by an international expert panel: the European School for Advanced Studies in Ophthalmology classification[J]. Eur J Ophthalmol, 2020, 30(1): 8-18. doi:10.1177/1120672119880394 [26] Saxena S, Caprnda M, Ruia S, et al. Spectral domain optical coherence tomography based imaging biomarkers for diabetic retinopathy[J]. Endocrine, 2019, 66(3): 509-516. doi:10.1007/s12020-019-02093-7 [27] Roberts PK, Vogl WD, Gerendas BS, et al. Quantification of fluid resolution and visual acuity gain in patients with diabetic macular edema using deep learning: a post hoc analysis of a randomized clinical trial[J]. JAMA Ophthalmol, 2020, 138(9): 945-953. doi:10.1001/jamaophthalmol.2020.2457 [28] Xie S, Okuwobi IP, Li MC, et al. Fast and automated hyperreflective foci segmentation based on image enhancement and improved 3D U-net in SD-OCT volumes with diabetic retinopathy[J]. Transl Vis Sci Technol, 2020, 9(2): 21. doi:10.1167/tvst.9.2.21 [29] Tripathi A, Kumar P, Tulsani A, et al. Fuzzy logic-based system for identifying the severity of diabetic macular edema from OCT B-scan images using DRIL, HRF, and cystoids[J]. Diagnostics, 2023, 13(15): 2550. doi:10.3390/diagnostics13152550 [30] 周静琳, 李金香, 曾琦. 577 nm阈值下微脉冲激光联合抗VEGF药物治疗难治性糖尿病性黄斑水肿的疗效观察[J]. 山东大学耳鼻喉眼学报, 2024, 38(2): 18-25. doi:10.6040/j.issn.1673-3770.0.2023.313 ZHOU Jinglin, LI Jinxiang, ZENG Qi. Therapeutic effect of micro-pulse laser combined with anti-VEGF drugs under the threshold of 577nm on refractory diabetic macular edema[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(2): 18-25. doi:10.6040/j.issn.1673-3770.0.2023.313 [31] Cao J, You K, Jin K, et al. Prediction of response to anti-vascular endothelial growth factor treatment in diabetic macular oedema using an optical coherence tomography-based machine learning method[J]. Acta Ophthalmol, 2021, 99(1): e19-e27. doi:10.1111/aos.14514 [32] Alryalat SA, Al-Antary M, Arafa Y, et al. Deep learning prediction of response to anti-VEGF among diabetic macular edema patients: treatment response analyzer system(TRAS)[J]. Diagnostics, 2022, 12(2): 312. doi:10.3390/diagnostics12020312 [33] Xu FB, Liu SP, Xiang YF, et al. Prediction of the short-term therapeutic effect of anti-VEGF therapy for diabetic macular edema using a generative adversarial network with OCT images[J]. J Clin Med, 2022, 11(10): 2878. doi:10.3390/jcm11102878 [34] Liu BY, Zhang B, Hu YJ, et al. Automatic prediction of treatment outcomes in patients with diabetic macular edema using ensemble machine learning[J]. Ann Transl Med, 2021, 9(1): 43. doi:10.21037/atm-20-1431 [35] Chou HD, Wu CH, Chiang WY, et al. Optical coherence tomography and imaging biomarkers as outcome predictors in diabetic macular edema treated with dexamethasone implant[J]. Sci Rep, 2022, 12(1): 3872. doi:10.1038/s41598-022-07604-7 [36] Iglicki M, Lavaque A, Ozimek M, et al. Biomarkers and predictors for functional and anatomic outcomes for small gauge pars Plana vitrectomy and peeling of the internal limiting membrane in naïve diabetic macular edema: the VITAL Study[J]. PLoS One, 2018, 13(7): e0200365. doi:10.1371/journal.pone.0200365 [37] 徐艺, 凌赛广, 董洲, 等. 一种基于计算机视觉的眼底图像质量评估系统的开发及应用[J]. 中华眼科杂志, 2020, 56(12): 920-927. doi:10.3760/cma.j.cn112142-20200409-00257 XU Yi, LING Saiguang, DONG Zhou, et al. Development and application of a fundus image quality assessment system based on computer vision technology[J]. Chinese Journal of Ophthalmology, 2020, 56(12): 920-927. doi:10.3760/cma.j.cn112142-20200409-00257 [38] 陈健祺. 人工智能在眼病筛查和诊断中的研究进展[J]. 眼科学报, 2022, 37(3): 208-213. doi:10.3978/j.issn.1000-4432.2022.03.01 CHEN Jianqi. Research progress of artificial intelligence in screening and diagnosis of eye diseases[J]. YAN KE XUE BAO, 2022, 37(3): 208-213. doi:10.3978/j.issn.1000-4432.2022.03.01 [39] 曹晓莉, 陈羽中. 糖尿病视网膜病变眼底图像辅助诊断软件的NMPA注册经验[J]. 眼科学报, 2021, 36(1): 111-114. doi:10.3978/j.issn.1000-4432.2021.01.17 CAO Xiaoli, CHEN Yuzhong. NMPA premarket application experience for a computer aided diagnosis software using fundus images of diabetic retinopathy[J]. YAN KE XUE BAO, 2021, 36(1): 111-114. doi:10.3978/j.issn.1000-4432.2021.01.17 [40] Ruamviboonsuk P, Chantra S, Seresirikachorn K, et al. Economic evaluations of artificial intelligence in ophthalmology[J]. Asia Pac J Ophthalmol, 2021, 10(3): 307-316. doi:10.1097/APO.0000000000000403 [41] Liu HR, Li RY, Zhang Y, et al. Economic evaluation of combined population-based screening for multiple blindness-causing eye diseases in China: a cost-effectiveness analysis[J]. Lancet Glob Health, 2023, 11(3): 456-465. doi:10.1016/S2214-109X(22)00554-X [42] Yu ZH, Yang X, Sweeting GL, et al. Identify diabetic retinopathy-related clinical concepts and their attributes using transformer-based natural language processing methods[J]. BMC Med Inform Decis Mak, 2022, 22(Suppl 3): 255. doi:10.1186/s12911-022-01996-2 [43] Lee YM, Bacchi S, Macri C, et al. Ophthalmology operation note encoding with open-source machine learning and natural language processing[J]. Ophthalmic Res, 2023, 66(1): 928-939. doi:10.1159/000530954 |
[1] | XIE Yulin, LEI Dapeng. Advances in the pathological study of artificial intelligence in the lymph node metastasis of head and neck squamous cell carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(3): 124-129. |
[2] | CHANG Weiwei, JIAO Wanzhen, CUI Yanyan, ZHAO Jie, LIU Zhaoqiang, ZHAO Bojun. Research progress of diabetic macular ischaemia [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(3): 130-136. |
[3] | ZHOU Jinglin, LI Jinxiang, ZENG Qi. Effect of 577 nm subthreshold micropulse laser photocoagulation combined with anti-VEGF on the treatment of refractory diabetic macular edema [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(2): 18-25. |
[4] | WU Lili, QU Yi. Application of optical tomography angiography and artificial intelligence in choroidal neovascularization secondary to pathologic myopia [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(2): 144-149. |
[5] | ZHANG Yitong, LI Qingxiang, SHI Zhenghao, SHANG Lei, YUAN Yuqi, CAO Zine, MA Lina, LIU Haiqin, REN Xiaoyong, SHI Yewen. The sleep structure of Children with obstructive sleep apnea and the development of a sleep structure interpretation model [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(6): 126-132. |
[6] | DU Yueshanyi, WANG Xian, ZHANG Guoming. Progress in the diagnosis and treatment of retinopathy of prematurity using artificial intelligence [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(3): 157-162. |
[7] | LIU Jiayu, FAN Huiming, ZOU You, CHEN Shiming. Research progress on the application of artificial intelligence in the diagnosis and treatment of nasopharyngeal carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(2): 135-142. |
[8] | YAO Shuang,LOU Hongfei. Advances in endotypes and precision medicine in chronic rhinosinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 20-29. |
[9] | HUA Hongli, LI Song,TAO Zezhang. Research progress of artificial intelligence in the diagnosis and treatment of nasopharyngeal carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 113-119. |
[10] | WANG Di, CHENG Jinzhang,YU Dan. Application of artificial intelligence based on machine learning in clinical diagnosis and treatment in otolaryngology [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(6): 125-131. |
[11] | CHEN Haibing, WEI Ya'nan, XU Xiaoquan, CHEN Xi. Prediction of cervical lymph node metastasis in papillary thyroid cancer based on XGBoost artificial intelligence and enhanced computed tomography [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(3): 40-45. |
[12] | ZHU Zhiling, LI SongOverview,GUAN GuofangGuidance. Application and prospect of artificial intelligence in otolaryngology [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(2): 115-120. |
[13] | Changyu QIU,Jun ZHOU,De′en ZHUANG,Qing YANG,Meiping LU,Lei CHENG. Artificial intelligence technology application in disclosing allergic rhinitis patients′ needs to otolaryngologists [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(3): 88-94. |
[14] | Huabin LI,Yuting LAI,Wenxiu JIANG. Endotypes and precision medicine in chronic sinusitis treatment [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(3): 9-13. |
[15] | Meiping LU,Lei CHENG. Current status of genetic research on allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(3): 36-41. |
|