JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY) ›› 2017, Vol. 31 ›› Issue (3): 95-99.doi: 10.6040/j.issn.1673-3770.0.2016.485
Previous Articles Next Articles
ZHANG Yanhui, DONG Pin
CLC Number:
[1] Sasaki T, Shiohama A, Minoshima S, et al. Identification of eight members of the Argonaute family in the human genome[J]. Genomics, 2003, 82(3):323-330. [2] Hutvagner G, Simard MJ. Argonaute proteins: key players in RNA silencing[J]. Nat Rev Mol Cell Biol, 2008, 9(1):22-32. [3] Schirle NT, MacRae IJ. The crystal structure of human argonaute2[J]. Science, 2012, 336(6084):1037-1040. [4] Lingel A, Simon B, Izaurralde E, et al. Nucleic acid 3'-end recognition by the Argonaute2 PAZ domain[J]. Nat Struct Mol Biol, 2004, 11(6):576-577. [5] Liu J, Carmell MA, Rivas FV, et al. Argonaute2 is the catalytic engine of mammalian RNAi[J]. Science, 2004, 305(5689):1437-1441. [6] Jinek M, Doudna JA. A three-dimensional view of the molecular machinery of RNA interference[J]. Nature, 2009, 457(7228):405-412. [7] Simon B, Kirkpatrick JP, Eckhardt S, et al. Recognition of 2'-O-methylated 3'-end of piRNA by the PAZ domain of a Piwi protein[J]. Structure, 2011, 19(2):172-180. [8] Martinez J, Tuschl T. RISC is a 5' phosphomonoester-producing RNA endonuclease[J]. Genes Dev, 2004, 18(9):975-980. [9] Nam S, Ryu H, Son WJ, et al. Mg2+ effect on argonaute and RNA duplex by molecular dynamics and bioinformatics implications[J]. PloS One, 2014, 9(10):e109745. [10] Ye X, Huang N, Liu Y, et al. Structure of C3PO and mechanism of human RISC activation[J]. Nat Struct Mol Biol, 2011, 18(6):650-657. [11] Liu Y, Ye X, Jiang F, et al. C3PO, an endoribonuclease that promotes RNAi by facilitating RISC activation[J]. Science, 2009, 325(5941):750-753. [12] De N, Young L, Lau PW, et al. Highly complementary target RNAs promote release of guide RNAs from human Argonaute2[J]. Mol Cell, 2013, 50(3):344-355. [13] Eulalio A, Helms S, Fritzsch C, et al. A C-terminal silencing domain in GW182 is essential for miRNA function[J]. RNA, 2009, 15(6):1067-1077. [14] Baillat D, Shiekhattar R. Functional dissection of the human TNRC6(GW182-related)family of proteins[J]. Mol Cell Biol, 2009, 29(15):4144-4155. [15] Behm-Ansmant I, Rehwinkel J, Doerks T, et al. mRNA degradation by miRNAs and GW182 requires both CCR4: NOT deadenylase and DCP1: DCP2 decapping complexes[J]. Genes Dev, 2006, 20(14):1885-1898. [16] Boland A, Huntzinger E, Schmidt S, et al. Crystal structure of the MID-PIWI lobe of a eukaryotic Argonaute protein[J]. Proc Natl Acad Sci U S A, 2011, 108(26):10466-10471. [17] Jakymiw A, Lian S, Eystathioy T, et al. Disruption of GW bodies impairs mammalian RNA interference[J]. Nat Cell Biol, 2005, 7(12):1267-1274. [18] Lian SL, Li S, Abadal GX, et al. The C-terminal half of human Ago2 binds to multiple GW-rich regions of GW182 to mediate silencing[J]. RNA, 2009, 15(5):804-813. [19] Liu J, Rivas FV, Wohlschlegel J, et al. A role for the P-body component GW182 in microRNA function[J]. Nat Cell Biol, 2005, 7(12):1261-1266. [20] Meister G, Landthaler M, Peters L, et al. Identification of novel argonaute-associated proteins[J]. Curr Biol, 2005, 15(23):2149-2155. [21] Zeng Y, Sankala H, Zhang X, et al. Phosphorylation of Argonaute2 at serine-387 facilitates its localization to processing bodies[J]. Biochem J, 2008, 413(3):429-436. [22] Rüdel S, Wang Y, Lenobel R, et al. Phosphorylation of human Argonaute proteins affects small RNA binding[J]. Nucleic Acids Res, 2011, 39(6):2330-2343. [23] Horman SR, Janas MM, Litterst C, et al. Akt-mediated phosphorylation of argonaute2 downregulates cleavage and upregulates translational repression of MicroRNA targets[J]. Mol Cell, 2013, 50(3):356-367. [24] Winter J, Diederichs S. Argonaute proteins regulate microRNA stability: increased microRNA abundance by Argonaute proteins is due to microRNA stabilization[J]. RNA Biol, 2011, 8(6):1149-1157. [25] Martine NJ, Gregory RI. Argonaute2 expression is post-transcriptionally coupled to microRNA abundance[J]. RNA, 2013, 19(5):605-612. [26] Shen J, Xia W, Khotskaya YB, et al. EGFR modulates microRNA maturation in response to hypoxia through phosphorylation of AGO2[J]. Nature, 2013, 497(7449):383-387. [27] Qi HH, Ongusaha PP, Myllyharju J, et al. Prolyl 4-hydroxylation regulates Argonaute 2 stability[J]. Nature, 2008, 455(7211):421-424. [28] Rybak A, Fuchs H, Hadian K, et al. The let-7 target gene mouse lin-41 is a stem cell specific E3 ubiquitin ligase for the miRNA pathway protein Ago2[J]. Nat Cell Biol, 2009, 11(12):1411-1420. [29] Sahin U, Lapaquette P, Andrieux A, et al. Sumoylation of human argonaute2 at lysine-402 regulates its stability[J]. PLoS One, 2014, 9(7):e102957. [30] Cheng N, Li Y, Han ZG. Argonaute2 promotes tumor metastasis by way of up-regulating focal adhesion kinase expression in hepatocellular carcinoma[J]. Hepatology, 2013, 57(5):1906-1918. [31] Papachristou DJ, Korpetinou A, Giannopoulou E, et al. Expression of the ribonucleases Drosha, Dicer, and Ago2 in colorectal carcinomas[J]. Virchows Arch, 2011, 459(4):431-440. [32] Li L, Yu C, Gao H, et al. Argonaute proteins: potential biomarkers for human colon cancer[J]. BMC Cancer, 2010, 10:38. [33] Zhang J, Fan XS, Wang CX, et al. Up-regulation of Ago2 expression in gastric carcinoma[J]. Med Oncol, 2013, 30(3):628. [34] Adams BD, Claffey KP, White BA. Argonaute-2 expression is regulated by epidermal growth factor receptor and mitogen-activated protein kinase signaling and correlates with a transformed phenotype in breast cancer cells[J]. Endocrinology, 2009, 150(1):14-23. [35] Bian XJ, Zhang GM, Gu CY, et al. Down-regulation of Dicer and Ago2 is associated with cell proliferation and apoptosis in prostate cancer[J]. Tumour Biol, 2014, 35(11):11571-11578. [36] Vaksman O, Hetland TE, Trope' CG, et al. Argonaute, Dicer, and Drosha are up-regulated along tumor progression in serous ovarian carcinoma[J]. Hum Pathol, 2012, 43(11):2062-2069. [37] Yang FQ, Huang JH, Liu M, et al. Argonaute2 is up-regulated in tissues of urothelial carcinoma of bladder[J]. Int J Clin Exp Pathol, 2013, 7(1):340-347. [38] Iosue I, Quaranta R, Masciarelli S, et al. Argonaute2 sustains the gene expression program driving human monocytic differentiation of acute myeloid leukemia cells[J]. Cell Death Dis, 2013, 4:e926. [39] Naoqhare PK, Tak YK, Kim MJ, et al. Knock-down of argonaute2(AGO2)induces apoptosis in myeloid leukaemia cells and inhibits siRNA-mediated silencing of transfected oncogenes in HEK-293 cells[J]. Basic Clin Pharmacol Toxicol, 2011, 109(4):274-282. [40] Asai T, Suzuki Y, Matsushita S, et al. Disappearance of the angiogenic potential of endothelial cells caused by Argonaute2 knockdown[J]. Biochem Biophys Res Commun, 2008, 368(2):243-248. [41] Chang SS, Smith I, Glazer C, et al. EIF2C is overexpressed and amplified in head and neck squamous cell carcinoma[J]. ORL J Otorhinolaryngol Relat Spec, 2010, 72(6):337-343. [42] Sand M, Skrygan M, Georgas D, et al. Expression levels of the microRNA maturing microprocessor complex component DGCR8 and the RNA-induced silencing complex(RISC)components argonaute-1, argonaute-2, PACT, TARBP1, and TARBP2 in epithelial skin cancer[J]. Mol Carcinog, 2012, 51(11):916-922. [43] Carouge D, Blanc V, Knoblaugh SE, et al. Parent-of-origin effects of A1CF and AGO2 on testicular germ-cell tumors, testicular abnormalities, and fertilization bias[J]. Proc Natl Acad Sci U S A, 2016, 113(37):E5425-E5433. [44] Murray MJ, Nicholson JC, Coleman N. Biology of childhood germ cell tumours,focussing on the significance of microRNAs[J]. Andrology, 2015, 3(1):129-139. [45] Guo J, Lv J, Liu M, et al. miR-346 up-regulates Argonaute 2(AGO2)protein expression to augment the activity of other microRNAs(miRNAs)and contributes to cervical cancer cell malignancy[J]. J Biol Chem, 2015, 290(51):30342-30350. [46] Wu S, Yu W, Qu X, et al. Argonaute2 promotes myeloma angiogenesis via microRNA dysregulation[J]. J Hematol Oncol, 2014, 7(1):40. [47] Xu Q, Hou YX, Langlais P, et al. Expression of the cereblon binding protein argonaute 2 plays an important role for multiple myeloma cell growth and survival[J]. BMC Cancer, 2016, 16(1):1-16. [48] Krell J, Stebbing J, Carissimi C, et al. TP53 regulates miRNA association with AGO2 to remodel the miRNA-mRNA interaction network[J]. Genome Res, 2016, 26(3):331-341. [49] Romero-Cordoba SL, Salido-Guadarrama I, Rodriguez-Dorantes M, et al. miRNA biogenesis: biological impact in the development of cancer[J]. Cancer Biol Ther, 2014, 15(11):1444-1455. [50] Yang M, Haase AD, Huang FK, et al. Dephosphorylation of tyrosine 393 in argonaute 2 by protein tyrosine phosphatase 1B regulates gene silencing in oncogenic RAS-induced senescence[J]. Mol Cell, 2014, 55(5):782-790. |
[1] | LI Xuexin, JIANG Zhen, YUE Jianlin, LIN Yun, SUN Ruijie, LIU Dayu, PAN Xinliang. The application of pedicle tissue flaps in reconstruction of pharyngeal and esophageal defects in head and neck surgery [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2018, 32(1): 48-52. |
[2] | LIN Yun, PAN Xinliang, LIU Dayu, SUN Ruijie, LI Xuexin, JIANG Zhen, YUE Jianlin. The application of local tissue flaps in primary reconstruction of laryngeal function after laryngectomy [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2018, 32(1): 56-60. |
[3] | PAN Yongjie, SUN Guochen, ZANG Chuanshan. Granular cell tumor in the larynx: a report of four cases and a literature review. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(5): 104-106. |
[4] | . The clinical use of nasal endoscopic surgical technique in treatment of rhinosinusal malignant tumor involving in the anterior skull base. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(2): 7-11. |
[5] | . Endoscopic surgery of sinonasal benign osteogenic tumors with involvement of nasal skull base region. [J]. J Otolaryngol Ophthalmol Shandong Univ, 2017, 31(2): 31-36. |
[6] | . Treatment of tumors in pterygopalatine fossa by endoscopy. [J]. J Otolaryngol Ophthalmol Shandong Univ, 2017, 31(2): 12-15. |
[7] | . The aqueous levels of TNF-α and IP-10 in different kinds of glaucoma and their correlation. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(1): 103-106. |
[8] | ZHOU Changhua, GUI Mingcai, XU Dan, LIU Bo. Application of sternocleidomastoid flaps in the resection of benign parotid tumors. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2016, 30(6): 46-48. |
[9] | QIU Jie, SUN Yan. Role of tumor marker in the diagnosis and treatment of thyroid carcinoma. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2016, 30(2): 28-31. |
[10] | WANG Junming, SONG Xicheng, LI Dajian. Tunnel flaps repairing the defects in external nasal tumor resection. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2016, 30(2): 59-61. |
[11] | ZHANG Meihua, ZHANG Niankai, SHAN Changsheng, LIU Tingting, LIAN Yuanyuan. Diagnostic value of CT of origin of nasal inverted papilloma. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2016, 30(1): 43-46. |
[12] | LÜ Dan, YANG Hui, YIN Rui, GU Deying, ZHENG Yitao. The middle ear cerumen gland tumor of three cases and review of the literature [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2015, 29(6): 8-12. |
[13] | LI Fu, ZHAO Shuyou. Expression of tumor suppressor in lung cancer 1 in laryngeal squamous cell carcinoma and its significance [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2015, 29(6): 36-38. |
[14] | WU Li, CHEN Ying, ZHOU Yunyun. Application value of SonoLiver time-intensity curve in the diagnosis of ocular adnexal lymphoma and orbital benign tumor. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2015, 29(4): 74-76. |
[15] | ZHU Kang, HE Ying, YAN Jing, XIA Cui, GAO Ying, ZHENG Guo-xi, HOU Jin. Nasal endoscopy by low-temperature plasma radiofrequency for benign tumor resection [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2015, 29(2): 62-64. |
|