Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2022, Vol. 36 ›› Issue (2): 151-156.doi: 10.6040/j.issn.1673-3770.0.2021.070

Previous Articles     Next Articles

Research progress of SIRT1 activation by resveratrol in ocular diseases

ZHANG Yi, WANG Wenjun,YANG Anhuai   

  1. Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
  • Published:2022-04-15

Abstract: Sirtuins are a class of histone deacetylases that regulate a variety of activities through the control of gene expression, DNA repair, metabolism, oxidative stress response, mitochondrial function, and other biological processes. Sirtuin 1(SIRT1)has been most widely studied. Resveratrol is a natural polyphenolic compound that upregulates SIRT1 activity. Resveratrol has strong antioxidant and anti-inflammatory activities, and has been widely studied in cardiac protection, neuroprotection, chemotherapy, and anti-aging. Oxidative stress and inflammation play key roles in the development and progression of eye diseases, which can lead to progressive vision loss and even blindness. This article briefly reviews the potential use of resveratrol in ocular diseases and the limitations of its applications.

Key words: Resveratrol, SIRT1, Oxidative stress, Inflammation, Histone deacetylase

CLC Number: 

  • R771
[1] Banez MJ, Geluz MI, Chandra A, et al. A systemic review on the antioxidant and anti-inflammatory effects of resveratrol, curcumin, and dietary nitric oxide supplementation on human cardiovascular health[J]. Nutr Res, 2020, 78: 11-26. doi: 10.1016/j.nutres.2020.03.002.
[2] Castaldo L, Narváez A, Izzo L, et al. Red wine consumption and cardiovascular health[J]. Molecules, 2019, 24(19): E3626. doi:10.3390/molecules24193626.
[3] Rahman MH, Akter R, Bhattacharya T, et al. Resveratrol and Neuroprotection: Impact and Its Therapeutic Potential in Alzheimer's Disease[J]. Front Pharmacol, 2020, 30(11): 619024. doi: 10.3389/fphar.2020.619024.
[4] Uddin MS, Al Mamun A, Kabir MT, et al. Neuroprotective role of polyphenols against oxidative stress-mediated neurodegeneration[J]. Eur J Pharmacol, 2020, 886: 173412. doi:10.1016/j.ejphar.2020.173412.
[5] Ko JH, Sethi G, Um JY, et al. The Role of Resveratrol in Cancer Therapy[J]. Int J Mol Sci, 2017,18(12):2589. doi:10.3390/ijms18122589.
[6] Khatoon E, Banik K, Harsha C, et al. Phytochemicals in cancer cell chemosensitization: Current knowledge and future perspectives[J]. Semin Cancer Biol, 2020, S1044-S579X(20)30150-4. doi:10.1016/j.semcancer.2020.06.014.
[7] Vaiserman A, Koliada A, Zayachkivska A, et al. Nanodelivery of natural antioxidants: an anti-aging perspective[J]. Front Bioeng Biotechnol, 2020, 7: 447. doi: 10.3389/fbioe.2019.00447.
[8] Li YR, Li SM, Lin CC. Effect of resveratrol and pterostilbene on aging and longevity[J]. Biofactors, 2018, 44(1): 69-82. doi:10.1002/biof.1400.
[9] Klimova B, Novotny M, Kuca K. Anti-aging drugs-prospect of longer life?[J]. Curr Med Chem, 2018, 25(17): 1946-1953. doi:10.2174/0929867325666171129215251.
[10] Levkovitch-Verbin H. Retinal ganglion cell apoptotic pathway in glaucoma: Initiating and downstream mechanisms[J]. Prog Brain Res, 2015, 220: 37-57. doi:10.1016/bs.pbr.2015.05.005.
[11] Kowluru RA, Mishra M. Oxidative stress, mitochondrial damage and diabetic retinopathy[J]. Biochim Biophys Acta, 2015, 1852(11): 2474-2483. doi:10.1016/j.bbadis.2015.08.001.
[12] Dib B, Lin HJ, Maidana DE, et al. Mitochondrial DNA has a pro-inflammatory role in AMD[J]. Biochim et Biophys Acta BBA - Mol Cell Res, 2015, 1853(11): 2897-2906. doi:10.1016/j.bbamcr.2015.08.012.
[13] Abu-Amero KK, Kondkar AA, Chalam KV. Resveratrol and ophthalmic diseases[J]. Nutrients, 2016, 8(4): 200. doi:10.3390/nu8040200.
[14] Zhou MW, Luo J, Zhang HM. Role of Sirtuin 1 in the pathogenesis of ocular disease(Review)[J]. Int J Mol Med, 2018, 42(1): 13-20. doi:10.3892/ijmm.2018.3623.
[15] de la Lastra CA, Villegas I. Resveratrol as an antioxidant and pro-oxidant agent: mechanisms and clinical implications[J]. Biochem Soc Trans, 2007, 35(Pt 5): 1156-1160. doi:10.1042/BST0351156.
[16] Meng T, Xiao D, Muhammed A, et al. Anti-inflammatory action and mechanisms of resveratrol[J]. Molecules, 2021, 26(1): 229. doi: 10.3390/molecules26010229.
[17] Anisimova NY, Kiselevsky MV, Sosnov AV, et al. Trans-, cis-, and dihydro-resveratrol: a comparative study[J]. Chem Cent J, 2011,5:88. doi: 10.1186/1752-153X-5-88.
[18] 韩雪莲. 白藜芦醇及其类似物和衍生物的药理学研究进展[J]. 化学与生物工程, 2014,31(4): 15-19. HAN Xuelian. Pharmacological research progress of resveratrol and its analogues and derivatives[J]. Chem Bioeng, 2014,31(4): 15-19.
[19] Delmas D, Jannin B, Latruffe N. Resveratrol: preventing properties against vascular alterations and ageing[J]. Mol Nutr Food Res, 2005, 49(5): 377-395. doi:10.1002/mnfr.200400098.
[20] Colin D, Gimazane A, Lizard G, et al. Effects of resveratrol analogs on cell cycle progression, cell cycle associated proteins and 5fluoro-uracil sensitivity in human derived colon cancer cells[J]. Int J Cancer, 2009, 124(12): 2780-2788. doi:10.1002/ijc.24264.
[21] Richard T, Pawlus AD, Iglésias ML, et al. Neuroprotective properties of resveratrol and derivatives[J]. Ann N Y Acad Sci, 2011, 1215: 103-108. doi: 10.1111/j.1749-6632.2010.05865.x.
[22] Brasnyó P, Molnár GA, Mohás M, et al. Resveratrol improves insulin sensitivity, reduces oxidative stress and activates the Akt pathway in type 2 diabetic patients[J]. Br J Nutr,2011,106(3):383-389. doi: 10.1017/S0007114511000316.
[23] Baur JA, Pearson KJ, Price NL, et al. Resveratrol improves health and survival of mice on a high-calorie diet[J]. Nature, 2006, 444(7117): 337-342. doi: 10.1038/nature05354.
[24] Lançon A, Frazzi R, Latruffe N. Anti-oxidant, anti-inflammatory and anti-angiogenic properties of resveratrol in ocular diseases[J]. Molecules, 2016, 21(3): 304. doi:10.3390/molecules21030304.
[25] Gertz M, Nguyen GTT, Fischer F, et al. A molecular mechanism for direct sirtuin activation by resveratrol[J]. PLoS One, 2012, 7(11): e49761. doi:10.1371/journal.pone.0049761.
[26] Price NL, Gomes AP, Ling AJ, et al. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function[J]. Cell Metab, 2012, 15(5): 675-690. doi: 10.1016/j.cmet.2012.04.003.
[27] Fourny N, Lan C, Sérée E, et al. Protective effect of resveratrol against ischemia-reperfusion injury via enhanced high energy compounds and eNOS-SIRT1 expression in type 2 diabetic female rat heart[J]. Nutrients, 2019, 11(1): 105. doi: 10.3390/nu11010105.
[28] Yang M, Li Z, Tao J, et al. Resveratrol induces PD-L1 expression through snail-driven activation of Wnt pathway in lung cancer cells [J]. J Cancer Res Clin Oncol, 2021, 147(4): 1101-1113. doi: 10.1007/s00432-021-03510-z.
[29] Albani D, Polito L, Signorini A, et al. Neuroprotective properties of resveratrol in different neurodegenerative disorders[J]. Bio Factors, 2010, 36(5): 370-376. doi:10.1002/biof.118.
[30] Petrocelli JJ, Drummond MJ. PGC-1α-targeted therapeutic approaches to enhance muscle recovery in aging[J]. Int J Environ Res Public Health, 2020, 17(22): E8650. doi:10.3390/ijerph17228650.
[31] Malaguarnera. Influence of resveratrol on the immune response[J]. Nutrients, 2019, 11(5): 946. doi:10.3390/nu11050946.
[32] Jaliffa C, Ameqrane I, Dansault A, et al. Sirt1 involvement in rd10 mouse retinal degeneration[J]. Invest Ophthalmol Vis Sci, 2009, 50(8): 3562-3572. doi: 10.1167/iovs.08-2817.
[33] Alves LF, Fernandes BF, Burnier JV, et al. Expression of SIRT1 in ocular surface squamous neoplasia[J]. Cornea, 2012,31(7):817-819. doi: 10.1097/ICO.0b013e31823f7857.
[34] Maloney SC, Antecka E, Odashiro AN, et al. Expression of SIRT1 and DBC1 in developing and adult retinas[J]. Stem Cells Int, 2012: 1-8. doi:10.1155/2012/908183.
[35] Pennington KL, DeAngelis MM. Epidemiology of age-related macular degeneration(AMD): associations with cardiovascular disease phenotypes and lipid factors[J]. Eye Vis(Lond), 2016, 3: 34. doi:10.1186/s40662-016-0063-5.
[36] Ruan Y, Jiang SB, Gericke A. Age-related macular degeneration: role of oxidative stress and blood vessels[J]. Int J Mol Sci, 2021, 22(3): 1296. doi:10.3390/ijms22031296.
[37] Tan W, Zou JL, Yoshida S, et al. The role of inflammation in age-related macular degeneration[J]. Int J Biol Sci, 2020, 16(15): 2989-3001. doi:10.7150/ijbs.49890.
[38] Boyer DS, Schmidt-Erfurth U, van Lookeren Campagne M, et al. The pathophysiology of geographic atrophy secondary to age-related macular degeneration and the complement pathway as a therapeutic target[J]. Retina, 2017, 37(5): 819-835. doi:10.1097/IAE.0000000000001392.
[39] van Lookeren Campagne M, LeCouter J, Yaspan BL, et al. Mechanisms of age-related macular degeneration and therapeutic opportunities[J]. J Pathol, 2014, 232(2): 151-164. doi:10.1002/path.4266.
[40] 张依, 王文俊, 杨安怀. 基因治疗湿性年龄相关性黄斑变性的研究进展[J]. 国际眼科杂志, 2020,20(3): 481-484. ZHANG Yi, WANG Wenjun, YANG Anhuai. Research progress in gene therapy for wet age-related macular degeneration[J]. Int Eye Sci, 2020, 20(3): 481-484.
[41] Maugeri A, Barchitta M, Mazzone MG, et al. Resveratrol modulates SIRT1 and DNMT functions and restores LINE-1 methylation levels in ARPE-19 cells under oxidative stress and inflammation[J]. Int J Mol Sci, 2018, 19(7): E2118. doi:10.3390/ijms19072118.
[42] Cao L, Liu C, Wang F, et al. SIRT1 negatively regulates amyloid-beta-induced inflammation via the NF-κB pathway[J]. Revista Brasileira De Pesquisas Med E Biol, 2013, 46(8): 659-669. doi:10.1590/1414-431X20132903.
[43] Maniadakis N, Konstantakopoulou E. Cost effectiveness of treatments for diabetic retinopathy: a systematic literature review[J]. Pharmacoeconomics, 2019, 37(8): 995-1010. doi:10.1007/s40273-019-00800-w.
[44] Semeraro F, Morescalchi F, Cancarini A, et al. Diabetic retinopathy, a vascular and inflammatory disease: Therapeutic implications[J]. Diabetes Metab, 2019, 45(6): 517-527. doi:10.1016/j.diabet.2019.04.002.
[45] Mohammad G, Abdelaziz GM, Siddiquei MM, et al. Cross-talk between sirtuin 1 and the proinflammatory mediator high-mobility group box-1 in the regulation of blood-retinal barrier breakdown in diabetic retinopathy[J]. Curr Eye Res, 2019, 44(10): 1133-1143. doi: 10.1080/02713683.2019.1625406.
[46] Jiang TT, Gu JX, Chen WW, et al. Resveratrol inhibits high-glucose-induced inflammatory “metabolic memory” in human retinal vascular endothelial cells through SIRT1-dependent signaling[J]. Can J Physiol Pharmacol, 2019, 97(12): 1141-1151. doi: 10.1139/cjpp-2019-0201.
[47] Delmas D, Cornebise C, Courtaut F, et al. New highlights of resveratrol: a review of properties against ocular diseases[J]. Int J Mol Sci, 2021, 22(3): 1295. doi:10.3390/ijms22031295.
[48] Luo JY, He T, Yang JY, et al. SIRT1 is required for the neuroprotection of resveratrol on retinal ganglion cells after retinal ischemia-reperfusion injury in mice[J]. Graefes Arch Clin Exp Ophthalmol, 2020, 258(2): 335-344. doi: 10.1007/s00417-019-04580-z.
[49] Chen SD, Fan Q, Li A, et al. Dynamic mobilization of PGC-1α mediates mitochondrial biogenesis for the protection of RGC-5 cells by resveratrol during serum deprivation[J]. Apoptosis, 2013, 18(7): 786-799. doi:10.1007/s10495-013-0837-3.
[50] Zheng T, Lu Y. SIRT1 protects human lens epithelial cells against oxidative stress by inhibiting p53-dependent apoptosis[J]. Curr Eye Res, 2016, 41(8): 1068-1075. doi:10.3109/02713683.2015.1093641.
[51] Doganay S, Borazan M, Iraz M, et al. The effect of resveratrol in experimental cataract model formed by sodium selenite[J]. Curr Eye Res, 2006, 31(2): 147-153. doi:10.1080/02713680500514685.
[52] Lin TJ, Peng CH, Chiou SH, et al. Severity of lens opacity, age, and correlation of the level of silent information regulator T1 expression in age-related cataract[J]. J Cataract Refract Surg, 2011, 37(7):1270-1274. doi: 10.1016/j.jcrs.2011.02.027.
[53] Zheng T, Lu Y. Changes in SIRT1 expression and its downstream pathways in age-related cataract in humans[J]. Curr Eye Res, 2011, 36(5): 449-455. doi:10.3109/02713683.2011.559301.
[54] Zheng T, Lu Y. SIRT1 protects human lens epithelial cells against oxidative stress by inhibiting p53-dependent apoptosis[J]. Curr Eye Res, 2016, 41(8): 1068-1075. doi:10.3109/02713683.2015.1093641.
[55] Dasgupta B, Milbrandt J. Resveratrol stimulates AMP kinase activity in neurons[J]. Proc Natl Acad Sci USA, 2007, 104(17): 7217-7222. doi:10.1073/pnas.0610068104.
[1] SU Jie, YANG Fuyu, LI Meng, CHEN Huiru, JIANG Lisheng, WANG Lixiang. GLP-1 protected the diabetic retinopathy through induction of autophagy in rats [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 30-34.
[2] AO Tian,CHENG Lei. An endotype study of chronic rhinosinusitis with nasal polyps and precise control and treatment under the guidance [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 7-14.
[3] SHI Shuai, ZHENG Quan,CHENG Lei. Research advances of dupilumab in the treatment of chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 36-42.
[4] HUANG Danyi, ZHANG Ting,CHEN Jing, ZHANG Wei. Progress of research regarding the role of the epithelial barrier in chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 78-83.
[5] WANG Na,CHAI Xiangbin. Research progress on prostate-derived ETS factor in asthma and inflammatory diseases of the nasal mucosa [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 136-141.
[6] DI Yu,LI Ying. Research progress in the inflammatory reaction and anti-inflammatory treatments in dry eye [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 144-150.
[7] LI Huajing, HAO Runmei, DAI Hao, ZHANG Ling, SHEN Zhen, QUAN Fang, SHAO Yuan. Mechanism of inhibition of ovalbumin-induced inflammation by catechins in an OVA-induced mouse model of allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(4): 1-7.
[8] FU Yihao, XU YixuanOverview,YAN Hong, ZHANG JieGuidance. Recent research advances in the role of glutaredoxin in oculopathy [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(3): 125-130.
[9] ZHANG Xuping, LIU XuexiaOverview,ZHANG HuaGuidance. Current progress of exosome research in allergic diseases [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(2): 136-140.
[10] ZHU ZhengruOveriew,ZHANG XiaobingGuidance. Correlation between high-mobility group box-1 and allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(6): 123-128.
[11] YANG Yifan, CHENG Lei. Rhinosinusitis and asthma in children: united airway disease [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(6): 10-15.
[12] SONG Fan, HUANG Weijun, XU Huajun, GUAN Jian, YI Hongliang. Relationship between carotid elasticity and oxidative stress in patients with obstructive sleep apnea syndrome [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(4): 99-104.
[13] Li SHA,Chuanhe LIU. Research progress in the treatment of bronchial asthma with biological agents [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(1): 53-58.
[14] JIANG Xiaodan, DONG Qingzhe, DANG Zhihong, LI Shenling, MIAO Yu, ZHAO Han, ZHANG Niankai. Dose-dependent effects of exogenous IL-17A on airway inflammatory responses in mice with allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2018, 32(6): 73-78.
[15] YANG Xue, LI Ying. Impact of dry eye on corneal endothelial cell density and morphology [J]. J Otolaryngol Ophthalmol Shandong Univ, 2018, 32(4): 72-76.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1]

DONG Wei-hong,BI Hong-sheng,WANG Xing-rong,MA Xian-zhen,DU Xiu-juan,YU Chao

. Vitreo-retinal surgery for severe ocular trauma in 52 cases[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(4): 362 -365 .
[2] WANG Xiang-ru,JIANG Hua,ZHANG Xia,WANG Xiao-li . Relationships among different refractive components following penetrating keratoplasty[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(4): 373 -375 .
[3] XU Yao-dong, LIU Xiang, OU Yong-kang, ZHENG Yi-qing,CHEN Sui-jun,JI Shu-fang, GUO Xiao-juan . Surgical management for stenosis or atresia after operations for congenital external atresia in 10 cases[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(5): 427 -428 .
[4] TIAN Shengxia,WANG Xiaohong,CHEN Xin,CAO Liantao, XUE Kun . Local application of glucocorticoids for chronic sinusitis andnasal polyps after endoscopic surgery[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(1): 51 -52 .
[5] YIN Ji-qing . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(5): 477 -477 .
[6] XING Jin-yan,ZONG Shu,TAO Ai-lin,ZHANG Jian-guo . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(5): 451 -455 .
[7] XIE Zhi-gang,ZHANG Xi-ying . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(3): 242 -243 .
[8] FENG Yun1,2, LI Wenting3, TANG Pingzhang1, XU Zhenggang1, ZHANG Bin1, WANG Naili3
. Anatomy study of thoracodorsal artery perforator flap and its clinical
significance in reconstruction of head and neck defects
[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2009, 23(2): 20 -23 .
[9] LIANG Li-Wei. Labiogingival groove approach in treatment of front dearticulation of the cartilage of the nasal septum[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2009, 23(3): 50 -51 .
[10] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2010, 24(01): 43 .