Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2023, Vol. 37 ›› Issue (2): 128-134.doi: 10.6040/j.issn.1673-3770.0.2021.097
• 综述 • Previous Articles
LI Cong1,2, LI Ling1,2, LIU Tingyan3, CHEN Liang2
CLC Number:
[1] Tyers M, Wright GD. Drug combinations: a strategy to extend the life of antibiotics in the 21st century[J]. Nat Rev Microbiol, 2019, 17(3): 141-155. doi:10.1038/s41579-018-0141-x [2] Iyer A, Madder A, Singh I. Teixobactins: a new class of 21st century antibiotics to combat multidrug-resistant bacterial pathogens[J]. Future Microbiol, 2019, 14: 457-460. doi:10.2217/fmb-2019-0056 [3] Zimmerman E, Lahav A. Ototoxicity in preterm infants: effects of genetics, aminoglycosides, and loud environmental noise[J]. J Perinatol, 2013, 33(1): 3-8. doi:10.1038/jp.2012.105 [4] Garinis AC, Cross CP, Srikanth P, et al. The cumulative effects of intravenous antibiotic treatments on hearing in patients with cystic fibrosis[J]. J Cyst Fibros, 2017, 16(3): 401-409. doi:10.1016/j.jcf.2017.01.006 [5] 于海洋, 孙丰林, 张增, 等. 鼻内镜下经咽鼓管鼓室内置管注药治疗梅尼埃病[J]. 山东大学耳鼻喉眼学报, 2011, 25(6): 64-66. doi:1673-3770(2011)06-0064-03 YU Haiyang, SUN Fenglin, ZHANG Zeng, et al. Intratympanic Gentamicin through an inserted catheter for Meniere's disease[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2011, 25(6): 64-66. doi:1673-3770(2011)06-0064-03 [6] Huth ME, Han KH, Sotoudeh K, et al. Designer aminoglycosides prevent cochlear hair cell loss and hearing loss[J]. J Clin Invest, 2015, 125(2): 583-592. doi:10.1172/JCI77424 [7] van Hecke R, van Rompaey V, Wuyts FL, et al. Systemic aminoglycosides-induced vestibulotoxicity in humans[J]. Ear Hear, 2017, 38(6): 653-662. doi:10.1097/AUD.0000000000000458 [8] Chen Y, Zhang SS, Chai RJ, et al. Hair cell regeneration[J]. Adv Exp Med Biol, 2019, 1130:1-16. doi:10.1007/978-981-13-6123-4_1 [9] Schacht J, Talaska AE, Rybak LP. Cisplatin and aminoglycoside antibiotics: hearing loss and its prevention[J]. Anat Rec(Hoboken), 2012, 295(11): 1837-1850. doi:10.1002/ar.22578 [10] Jing W, Zongjie H, Denggang FWu J, et al. Mitochondrial mutations associated with aminoglycoside ototoxicity and hearing loss susceptibility identified by meta-analysis[J]. J Med Genet, 2015, 52(2): 95-103. doi:10.1136/jmedgenet-2014-102753 [11] Prezant TR, Agapian JV, Bohlman MC, et al. Mitochondrial ribosomal RNA mutation associated with both antibiotic-induced and non-syndromic deafness[J]. Nat Genet, 1993, 4(3): 289-294. doi:10.1038/ng0793-289 [12] Zhao H, Li R, Wang Q, et al. Maternally inherited aminoglycoside-induced and nonsyndromic deafness is associated with the novel C1494T mutation in the mitochondrial 12S rRNA gene in a large Chinese family[J]. Am J Hum Genet, 2004, 74(1): 139-152. doi:10.1086/381133 [13] Koo JW, Quintanilla-Dieck L, Jiang M, et al. Endotoxemia-mediated inflammation potentiates aminoglycoside-induced ototoxicity[J]. Sci Transl Med, 2015, 7(298): 298ra118. doi:10.1126/scitranslmed.aac5546 [14] Hayward T, Young A, Jiang A, et al. Glucococorticoid receptor activation exacerbates aminoglycoside-induced damage to the zebrafish lateral line[J]. Hear Res, 2019,377: 12-23. doi:10.1016/j.heares.2019.03.002 [15] Garinis AC, Liao S, Cross CP, et al. Effect of gentamicin and levels of ambient sound on hearing screening outcomes in the neonatal intensive care unit: a pilot study[J]. Int J Pediatr Otorhinolaryngol, 2017, 97:42-50. doi:10.1016/j.ijporl.2017.03.025 [16] Denamur S, Tyteca D, Marchand-Brynaert J, et al. Role of oxidative stress in lysosomal membrane permeabilization and apoptosis induced by gentamicin, an aminoglycoside antibiotic[J]. Free Radic Biol Med, 2011, 51(9): 1656-1665. doi:10.1016/j.freeradbiomed.2011.07.015 [17] Lesniak W, Pecoraro VL, Schacht J. Ternary complexes of gentamicin with iron and lipid catalyze formation of reactive oxygen species[J]. Chem Res Toxicol, 2005, 18(2): 357-364. doi:10.1021/tx0496946 [18] Hashino E, Shero M. Endocytosis of aminoglycoside antibiotics in sensory hair cells[J]. Brain Res, 1995, 704(1): 135-140. doi:10.1016/0006-8993(95)01198-6 [19] Alharazneh A, Luk L, Huth M, et al. Functional hair cell mechanotransducer channels are required for aminoglycoside ototoxicity[J]. PLoS One, 2011, 6(7): e22347. doi:10.1371/journal.pone.0022347 [20] Makabe A, Kawashima Y, Sakamaki Y, et al. Systemic fluorescent gentamicin enters neonatal mouse hair cells predominantly through sensory mechanoelectrical transduction channels[J]. J Assoc Res Otolaryngol, 2020, 21(2): 137-149. doi:10.1007/s10162-020-00746-3 [21] Stepanyan RS, Indzhykulian AA, Vélez-Ortega AC, et al. TRPA1-mediated accumulation of aminoglycosides in mouse cochlear outer hair cells[J]. J Assoc Res Otolaryngol, 2011, 12(6): 729-740. doi:10.1007/s10162-011-0288-x [22] Jiang M, Li H, Johnson A, et al. Inflammation up-regulates cochlear expression of TRPV1 to potentiate drug-induced hearing loss[J]. Sci Adv, 2019, 5(7): eaaw1836. doi:10.1126/sciadv.aaw1836 [23] Liu Q, Liu P, Ding Y, et al. Mitochondrial COI/tRNASer(UCN)G7444A mutation may be associated with aminoglycoside-induced and non-syndromic hearing impairment[J]. Mol Med Rep, 2015, 12(6): 8176-8178. doi:10.3892/mmr.2015.4484 [24] Zhang J, Lu B, Xia WW, et al. The mitochondrial transfer RNAAsp A7551G mutation may contribute to the clinical expression of deafness associated with the A1555G mutation in a pedigree with hearing impairment[J]. Mol Med Rep, 2019, 19(3): 1797-1802. doi:10.3892/mmr.2018.9790 [25] Zhao H, Young WY, Yan QF, et al. Functional characterization of the mitochondrial 12S rRNA C1494T mutation associated with aminoglycoside-induced and non-syndromic hearing loss[J]. Nucleic Acids Res, 2005, 33(3): 1132-1139. doi:10.1093/nar/gki262 [26] Ding Y, Xia BH, Teng YS, et al. Mitochondrial COI/tRNA Ser(UCN)G7444A mutation may be associated with hearing impairment in a Han Chinese family[J]. Int J Clin Exp Pathol, 2017, 10(9): 9496-9502. doi:10.1515/bjmg-2017-0025 [27] Thyagarajan D, Bressman S, Bruno C, et al. A novel mitochondrial 12SrRNA point mutation in Parkinsonism, deafness, and neuropathy[J]. Ann Neurol, 2000, 48(5): 730-736. [28] Muyderman H, Sims NR, Tanaka M, et al. The mitochondrial T1095C mutation increases gentamicin-mediated apoptosis[J]. Mitochondrion, 2012, 12(4): 465-471. doi:10.1016/j.mito.2012.06.006 [29] Lu J, Li Z, Zhu Y, et al. Mitochondrial 12S rRNA variants in 1642 Han Chinese pediatric subjects with aminoglycoside-induced and nonsyndromic hearing loss[J]. Mitochondrion, 2010, 10(4): 380-390. doi:10.1016/j.mito.2010.01.007 [30] Kaur T, Zamani D, Tong L, et al. Fractalkine signaling regulates macrophage recruitment into the cochlea and promotes the survival of spiral ganglion neurons after selective hair cell lesion[J]. J Neurosci, 2015, 35(45): 15050-15061. doi:10.1523/JNEUROSCI.2325-15.2015 [31] Hirose K, Li SZ, Ohlemiller KK, et al. Systemic lipopolysaccharide induces cochlear inflammation and exacerbates the synergistic ototoxicity of kanamycin and furosemide[J]. J Assoc Res Otolaryngol, 2014, 15(4): 555-570. doi:10.1007/s10162-014-0458-8 [32] Shimogori H, Yamashita H, Watanabe T, et al. A role of glucocorticoid receptors in the Guinea pig vestibular system[J]. Brain Res, 1999, 851(1/2): 258-260. doi:10.1016/s0006-8993(99)02141-1 [33] ten Cate WJ, Curtis LM, Rarey KE. Immunochemical detection of glucocorticoid receptors within rat cochlear and vestibular tissues[J]. Hear Res, 1992, 60(2): 199-204. doi:10.1016/0378-5955(92)90021-e [34] Grewal AS, Nedzelski JM, Chen JM, et al. Dexamethasone uptake in the murine organ of Corti with transtympanic versus systemic administration[J]. Le J D'oto Rhino Laryngol De Chir Cervico Faciale, 2013, 42(1):19. doi:10.1186/1916-0216-42-19 [35] Lee JH, Oh SH, Kim TH, et al. Anti-apoptotic effect of dexamethasone in an ototoxicity model[J]. Biomater Res, 2017, 21:4. doi:10.1186/s40824-017-0090-x [36] Güneri EA, Olgun Y, Aslıer M, et al. Cochlear and vestibular effects of combined intratympanic gentamicin and dexamethasone[J]. J Int Adv Otol, 2017, 13(1): 47-52. doi:10.5152/iao.2016.2181 [37] Zhang L, Zhou R, Li X, et al. Stress-induced change of mitochondria membrane potential regulated by genomic and non-genomic GR signaling: a possible mechanism for hippocampus atrophy in PTSD[J]. Med Hypotheses, 2006, 66(6): 1205-1208. doi:10.1016/j.mehy.2005.11.041 [38] Gilchrist FJ, Cox KJ, Rowe R, et al. Itraconazole and inhaled fluticasone causing hypothalamic-pituitary-adrenal axis suppression in adults with cystic fibrosis[J]. J Cyst Fibros, 2013, 12(4): 399-402. doi:10.1016/j.jcf.2012.10.007 [39] Bohne BA, Harding GW, Lee SC. Death pathways in noise-damaged outer hair cells[J]. Hear Res, 2007, 223(1/2): 61-70. doi:10.1016/j.heares.2006.10.004 [40] Kujawa SG, Liberman MC. Synaptopathy in the noise-exposed and aging cochlea: primary neural degeneration in acquired sensorineural hearing loss[J]. Hear Res, 2015, 330(Pt B): 191-199. doi:10.1016/j.heares.2015.02.009 [41] Brown JJ, Brummett RE, Meikle MB, et al. Combined effects of noise and neomycin. Cochlear changes in the Guinea pig[J]. Acta Otolaryngol, 1978, 86(5/6): 394-400. doi:10.3109/00016487809107518 [42] Li H, Kachelmeier A, Furness DN, et al. Local mechanisms for loud sound-enhanced aminoglycoside entry into outer hair cells[J]. Front Cell Neurosci, 2015,14:130. doi:10.3389/fncel.2015.00130 [43] Cross CP, Liao S, Urdang ZD, et al. Effect of Sepsis and systemic inflammatory response syndrome on neonatal hearing screening outcomes following gentamicin exposure[J]. Int J Pediatr Otorhinolaryngol, 2015, 79(11): 1915-1919. doi:10.1016/j.ijporl.2015.09.004 [44] 贺芳, 温秀兰, 林艳, 等. 新生儿重症监护病房噪音水平调查与对策[J]. 护理学报, 2020, 27(12): 42-45. doi:10.16460/j.issn1008-9969.2020.12.042 [45] 张舒文, 李丽玲, 窦亚兰, 等. 新生儿重症监护病房噪声现况调查[J]. 护理研究, 2022, 36(6): 1093-1098. doi:10.12102/j.issn.1009-6493.2022.06.028 ZHANG Shuwen, LI Liling, DOU Yalan, et al. Investigation on noise status of neonatal intensive care unit[J]. Nursing Research of China, 2022, 36(6): 1093-1098. doi:10.12102/j.issn.1009-6493.2022.06.028 [46] Kirkwood NK, O'Reilly M, Derudas M, et al. D-tubocurarine and berbamine: alkaloids that are permeant blockers of the hair cell's mechano-electrical transducer channel and protect from aminoglycoside toxicity[J]. Front Cell Neurosci, 2017 5(11):262. doi:10.3389/fncel.2017.00262 [47] Kitcher SR, Kirkwood NK, Camci ED, et al. ORC-13661 protects sensory hair cells from aminoglycoside and cisplatin ototoxicity[J]. JCI Insight, 2019, 4(15): 126764. doi:10.1172/jci.insight.126764 [48] Mostafa BE, Tawfik S, Hefnawi NG, et al. The role of deferoxamine in the prevention of gentamicin ototoxicity: a histological and audiological study in Guinea pigs[J]. Acta Otolaryngol, 2007, 127(3): 234-239. doi:10.1080/00016480600794495 [49] Kim HJ, Lee JO, Kim JS. Protective effects of deferoxamine on vestibulotoxicity in gentamicin-induced bilateral vestibulopathy rat model[J]. Front Neurol, 2021,12:650752. doi:10.3389/fneur.2021.650752 [50] Somda??塂 MA, Korkmaz F, Gürgen SG, et al. N-acetylcysteine prevents gentamicin ototoxicity in a rat model[J]. J Int Adv Otol, 2015, 11(1): 12-18. doi:10.5152/iao.2015.650 [51] Campbell KC, Martin SM, Meech RP, et al. D-methionine(D-met)significantly reduces kanamycin-induced ototoxicity in pigmented Guinea pigs[J]. Int J Audiol, 2016, 55(5): 273-278. doi:10.3109/14992027.2016.1143980 [52] Aladag I, Guven M, Songu M. Prevention of gentamicin ototoxicity with N-acetylcysteine and vitamin A[J]. J Laryngol Otol, 2016, 130(5): 440-446. doi:10.1017/S0022215116000992 [53] Fetoni AR, Eramo SL, Rolesi R, et al. Antioxidant treatment with coenzyme Q-ter in prevention of gentamycin ototoxicity in an animal model[J]. Acta Otorhinolaryngol Ital, 2012, 32(2): 103-110. doi:10.3389/fneur.2021.650752 [54] He Y, Li W, Zheng Z, et al. Inhibition of Protein arginine methyltransferase 6 reduces reactive oxygen species production and attenuates aminoglycoside- and cisplatin-induced hair cell death[J]. Theranostics, 2020, 10(1): 133-150. doi:10.7150/thno.37362 [55] Matsui JI, Gale JE, Warchol ME. Critical signaling events during the aminoglycoside-induced death of sensory hair cells in vitro[J]. J Neurobiol, 2004, 61(2): 250-266. doi:10.1002/neu.20054 [56] Eshraghi AA, Wang J, Adil E, et al. Blocking c-Jun-N-terminal kinase signaling can prevent hearing loss induced by both electrode insertion trauma and neomycin ototoxicity[J]. Hear Res, 2007, 226(1/2): 168-177. doi:10.1016/j.heares.2006.09.008 [57] Knauer SK, Heinrich UR, Bier C, et al. An otoprotective role for the apoptosis inhibitor protein survivin[J]. Cell Death Dis, 2010 1(7):e51. doi:10.1038/cddis.2010.25 [58] Ishikawa M, García-Mateo N, Cusak A, et al. Lower ototoxicity and absence of hidden hearing loss point to gentamicin C1a and apramycin as promising antibiotics for clinical use[J]. Sci Rep, 2019, 9(1): 2410. doi:10.1038/s41598-019-38634-3 [59] Di Bonaventura G, Lupetti V, Verginelli F, et al. Repurposing the veterinary antibiotic apramycin for antibacterial and antibiofilm activity against Pseudomonas aeruginosa from cystic fibrosis patients[J]. Front Microbiol, 2022, 12:801152. doi:10.3389/fmicb.2021.801152 [60] Zada SL, Baruch BB, Simhaev L, et al. Chemical modifications reduce auditory cell damage induced by aminoglycoside antibiotics[J]. J Am Chem Soc, 2020, 142(6): 3077-3087. doi:10.1021/jacs.9b12420 [61] Huth ME, Han KH, Sotoudeh K, et al. Designer aminoglycosides prevent cochlear hair cell loss and hearing loss[J]. J Clin Invest, 2015, 125(2): 583-592. doi:10.1172/JCI77424 [62] Wang H, Zhang Z, Xiong F, et al. Isolation and structure characterization of related impurities in etimicin sulfate by LC/ESI-MS(n)and NMR[J]. J Pharm Biomed Anal, 2011, 55(5): 902-907. doi:10.1016/j.jpba.2011.03.005 [63] Chaudhary M, Kesava Naidu G, Kumar S, et al. Comparative antibacterial activity of a novel semisynthetic antibiotic: etimicin sulphate and other aminoglycosides[J]. World J Microbiol Biotechnol, 2012, 28(12): 3365-3371. doi:10.1007/s11274-012-1148-5 [64] Yao L, Zhang JW, Chen B, et al. Mechanisms and pharmacokinetic/pharmacodynamic profiles underlying the low nephrotoxicity and ototoxicity of etimicin[J]. Acta Pharmacol Sin, 2020, 41(6): 866-878. doi:10.1038/s41401-019-0342-5 [65] Shao W, Zhong D, Jiang H, et al. A new aminoglycoside etimicin shows low nephrotoxicity and ototoxicity in zebrafish embryos[J]. J Appl Toxicol, 2021, 41(7): 1063-1075. doi:10.1002/jat.4093 [66] Sullivan ME, Song Y, Greenhouse R, et al. Dissociating antibacterial from ototoxic effects of gentamicin C-subtypes[J]. Proc Natl Acad Sci USA, 2020, 117(51): 32423-32432. doi:10.1073/pnas.2013065117 [67] Guo J, Chai R, Li H, et al. Protection of hair cells from ototoxic drug-induced hearing loss[J]. Adv Exp Med Biol, 2019,1130:17-36. doi:10.1007/978-981-13-6123-4_2 |
[1] | WANG Qian, LIU Na, WANG Shaopeng. A case report of Leber's idiopathic stellate neuroretinitis and literature review [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(6): 106-110. |
[2] | AO Tian,CHENG Lei. An endotype study of chronic rhinosinusitis with nasal polyps and precise control and treatment under the guidance [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 7-14. |
[3] | SHI Shuai, ZHENG Quan,CHENG Lei. Research advances of dupilumab in the treatment of chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 36-42. |
[4] | HUANG Danyi, ZHANG Ting,CHEN Jing, ZHANG Wei. Progress of research regarding the role of the epithelial barrier in chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 78-83. |
[5] | WANG Na,CHAI Xiangbin. Research progress on prostate-derived ETS factor in asthma and inflammatory diseases of the nasal mucosa [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 136-141. |
[6] | CHEN Shiqin, WEI Pingcun, HU Yunlong, HU Jinwang. Effects of three different nasal uses of glucocorticoid on mucosal outcome after endoscopic sinus surgery [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 195-201. |
[7] | DI Yu,LI Ying. Research progress in the inflammatory reaction and anti-inflammatory treatments in dry eye [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 144-150. |
[8] | ZHANG Yi, WANG Wenjun,YANG Anhuai. Research progress of SIRT1 activation by resveratrol in ocular diseases [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 151-156. |
[9] | ZHONG Liping, GUAN Xilong, WANG Jingjing, TANG Yong. Intratympanic injections and systemic glucocorticoid treatment for sudden hearing loss: a systematic review and Meta-analysis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(5): 1-10. |
[10] | LI Huajing, HAO Runmei, DAI Hao, ZHANG Ling, SHEN Zhen, QUAN Fang, SHAO Yuan. Mechanism of inhibition of ovalbumin-induced inflammation by catechins in an OVA-induced mouse model of allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(4): 1-7. |
[11] | ZHANG Xuping, LIU Xuexia,ZHANG Hua. Current progress of exosome research in allergic diseases [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(2): 136-140. |
[12] | ZHU Zhengru,ZHANG Xiaobing. Correlation between high-mobility group box-1 and allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(6): 123-128. |
[13] | JIANG Yang, LI Ying, CUI Gen. Efficacy of 0.1% diclofenac sodium eye drops post-SMILE [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(2): 57-60. |
[14] | YANG Yifan, CHENG Lei. Rhinosinusitis and asthma in children: united airway disease [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(6): 10-15. |
[15] | LIU Jianbo, ZHANG Huan. Phacoemulsification combined with intravitreal ranibizumab or triamcinolone acetonide injection for the treatment of cataract accompanied by diabetic macular edema [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(2): 99-104. |
|