Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2021, Vol. 35 ›› Issue (4): 1-7.doi: 10.6040/j.issn.1673-3770.0.2020.399
LI Huajing, HAO Runmei, DAI Hao, ZHANG Ling, SHEN Zhen, QUAN Fang, SHAO Yuan
CLC Number:
[1] 林兴, 沈翎, 林宗通, 等. 儿童鼻腔异物与过敏性鼻炎关系的初步研究[J]. 山东大学耳鼻喉眼学报, 2020, 34(4): 101-104. doi:10.6040/j.issn.1673-3770.0.2020.243. LIN Xing, SHEN Ling, LIN Zongtong, et al. Relationship between nasal foreign body and allergic rhinitis in children: a preliminary study[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(4): 101-104. doi:10.6040/j.issn.1673-3770.0.2020.243. [2] Bernstein DI, Schwartz G, Bernstein JA. Allergic rhinitis: mechanisms and treatment[J]. Immunol Allergy Clin N Am, 2016, 36(2): 261-278. doi:10.1016/j.iac.2015.12.004. [3] Bayar Muluk N, Bafaqeeh SA, Cingi C. Anti-IgE treatment in allergic rhinitis[J]. Int J Pediatr Otorhinolaryngol, 2019, 127: 109674. doi:10.1016/j.ijporl.2019.109674. [4] Ma K, Zhang H, Baloch Z. Pathogenetic and therapeutic applications of tumor necrosis factor-α(TNF-α)in major depressive disorder: a systematic review[J]. Int J Mol Sci, 2016, 17(5). doi:10.3390/ijms17050733. doi:10.3390/ijms17050733. [5] Chen XW, Zhou SF. Inflammation, cytokines, the IL-17/IL-6/STAT3/NF-κB axis, and tumorigenesis[J]. Drug Des Devel Ther, 2015, 9: 2941-2946. doi:10.2147/dddt.s86396. [6] Sun N, Guo H, Wang Y. Retinoic acid receptor-related orphan receptor gamma-t(RORγt)inhibitors in clinical development for the treatment of autoimmune diseases: a patent review(2016-present)[J]. Expert Opin Ther Pat, 2019, 29(9): 663-674. doi:10.1080/13543776.2019.1655541. [7] Wee JH, Zhang YL, Rhee CS, et al. Inhibition of allergic response by intranasal selective NF-κB decoy oligodeoxynucleotides in a murine model of allergic rhinitis[J]. Allergy Asthma Immunol Res, 2017, 9(1): 61-69. doi:10.4168/aair.2017.9.1.61. [8] Zhou E, Fu Y, Wei Z, et al. Inhibition of allergic airway inflammation through the blockage of NF-κB activation by ellagic acid in an ovalbumin-induced mouse asthma model[J]. Food Funct, 2014, 5(9): 2106-2112. doi:10.1039/c4fo00384e. [9] Mathur S, Hoskins C. Drug development: Lessons from nature[J]. Biomed Rep, 2017, 6(6): 612-614. doi:10.3892/br.2017.909. [10] Lee HA, Song YR, Park MH, et al. Catechin ameliorates Porphyromonas gingivalis-induced inflammation via the regulation of TLR2/4 and inflammasome signaling[J]. J Periodontol, 2020, 91(5): 661-670. doi:10.1002/JPER.18-0004. [11] Syed Hussein SS, Kamarudin MNA, Abdul Kadir H.(+)-catechin attenuates NF-κB activation through regulation of Akt, MAPK, and AMPK signaling pathways in LPS-induced BV-2 microglial cells[J]. Am J Chin Med, 2015, 43(5): 927-952. doi:10.1142/s0192415x15500548. [12] 闫亚杰, 阮岩, 潘增烽, 等. 儿茶素对变应性鼻炎小鼠Th17/Treg表达的影响[J]. 中药新药与临床药理, 2018,29(3): 251-256. doi:10.19378/j.issn.1003-9783.2018.03.001. YAN Yajie, RUAN Yan, PAN Zengfeng, et al. Effects of catechin on the expression of Th17/treg in allergic rhinitis mice[J]. Tradit Chin Drug Res Clin Pharmacol, 2018,29(3): 251-256. doi:10.19378/j.issn.1003-9783.2018.03.001. [13] Pan ZF, Zhou Y, Luo X, et al. Against NF-κB/thymic stromal lymphopoietin signaling pathway, catechin alleviates the inflammation in allergic rhinitis[J]. Int Immunopharmacol, 2018, 61: 241-248. doi:10.1016/j.intimp.2018.06.011. [14] Kim DY, Fukuyama S, Nagatake T, et al. Implications of nasopharynx-associated lymphoid tissue(NALT)in the development of allergic responses in an allergic rhinitis mouse model[J]. Allergy, 2012, 67(4): 502-509. doi:10.1111/j.1398-9995.2011.02782.x. [15] 郑永艳, 周园, 周联, 等. 小青龙汤抗过敏作用及其机制研究[J]. 时珍国医国药, 2017, 28(5): 1052-1055. doi:10.3969/j.issn.1008-0805.2017.05.011. [16] Fan XH, Cheng L, Yan AH. Ameliorative effect of acetylshikonin on ovalbumin(OVA)-induced allergic rhinitis in mice through the inhibition of Th2 cytokine production and mast cell histamine release[J]. APMIS, 2019, 127(10): 688-695. doi:10.1111/apm.12984. [17] Ciprandi G, Marseglia GL, Castagnoli R, et al. From IgE to clinical trials of allergic rhinitis[J]. Expert Rev Clin Immunol, 2015, 11(12): 1321-1333. doi:10.1586/1744666x.2015.1086645. [18] Batard T, Weyer A, Laroze A, et al. Isotypic analysis of grass pollen-specific antibodies in human plasma. 4. Biological activity of allergen-specific and autoanti-IgE antibody fractions on basophil histamine release[J]. Clin Exp Allergy, 1996, 26(11): 1308-1315. doi:10.1111/j.1365-2222.1996.tb00528.x. [19] Ulanova M, Asfaha S, Stenton G, et al. Involvement of Syk protein tyrosine kinase in LPS-induced responses in macrophages[J]. J Endotoxin Res, 2007, 13(2): 117-125. doi:10.1177/0968051907079125. [20] Yoshino S, Mizutani N, Matsuoka D, et al. Intratracheal exposure to Fab fragments of an allergen-specific monoclonal antibody regulates asthmatic responses in mice[J]. Immunology, 2014, 141(4): 617-627. doi:10.1111/imm.12225. [21] Bf M. Allergic rhinitis and inflammatory airway disease: interactions within the unifiedairspace[J]. Chinese Medical Digest(Otorhinolaryngology), 2011,26(2): 111. doi:10.19617/j.issn1001-1307.2011.02.026. [22] Tan HL, Rosenthal M. IL-17 in lung disease: friend or foe?[J]. Thorax, 2013, 68(8): 788-790. doi:10.1136/thoraxjnl-2013-203307. [23] Sun SC. The non-canonical NF-κB pathway in immunity and inflammation[J]. Nat Rev Immunol, 2017, 17(9): 545-558. doi:10.1038/nri.2017.52. [24] Zhang K, Liu JY, You XT, et al. P2X7 as a new target for chrysophanol to treat lipopolysaccharide-induced depression in mice[J]. Neurosci Lett, 2016, 613: 60-65. doi:10.1016/j.neulet.2015.12.043. [25] Mitchell JP, Carmody RJ. NF-κB and the transcriptional control of inflammation[J]. Int Rev Cell Mol Biol, 2018, 335: 41-84. doi:10.1016/bs.ircmb.2017.07.007. [26] 倪菁, 雷飞, 白丹, 等. 儿童分泌性中耳炎耳积液中免疫相关指标表达分析[J]. 山东大学耳鼻喉眼学报, 2019, 33(4): 56-59. doi:10.6040/j.issn.1673-3770.0.2018.230. NI Jing, LEI Fei, BAI Dan, et al. Expression of immunological markers in middle ear effusion in children with secretory otitis media[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(4): 56-59. doi:10.6040/j.issn.1673-3770.0.2018.230. [27] Subbanna M, Shivakumar V, Talukdar PM, et al. Role of IL-6/RORC/IL-22 axis in driving Th17 pathway mediated immunopathogenesis of schizophrenia[J]. Cytokine, 2018, 111: 112-118. doi:10.1016/j.cyto.2018.08.016. |
[1] | AO Tian,CHENG Lei. An endotype study of chronic rhinosinusitis with nasal polyps and precise control and treatment under the guidance [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 7-14. |
[2] | SHI Shuai, ZHENG Quan,CHENG Lei. Research advances of dupilumab in the treatment of chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 36-42. |
[3] | HUANG Danyi, ZHANG Ting,CHEN Jing, ZHANG Wei. Progress of research regarding the role of the epithelial barrier in chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 78-83. |
[4] | NI Jingzi, WAN Wenjin,CHENG Lei. Research progress on health-related quality of life in allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 110-115. |
[5] | LIN Yihang,LI Youjin. Research progress on gut microbiome in children with allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 116-122. |
[6] | LIU Zhen,SONG Xicheng. Mechanisms and research progress of pyroptosis in allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 123-129. |
[7] | WANG Na,CHAI Xiangbin. Research progress on prostate-derived ETS factor in asthma and inflammatory diseases of the nasal mucosa [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 136-141. |
[8] | LIU Yitong, ZHOU Suizi,QIU Qianhui. Research progress on NLRP3 inflammasome in chronic rhinosinusitis and allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 142-146. |
[9] | GONG Xiaoyang, CHENG Lei. Analysis of proportion of outpatients with allergic rhinitis during the coronavirus infectious disease 2019 pandemic [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 245-255. |
[10] | ZHANG Yaqi, LIU Huimin, CAO Linman, WANG Ziyu, LIN Xu, LI Yanping, XUE Gang, WU Jingfang. Expression and significance of the MAPK,PI3K-AKT,NF-κB pathways of allergic rhinitis in mice [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 254-259. |
[11] | LU Weili, JIANG Tao, LI Xianhua. Analysis of sIgE in polysensitized children with allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 260-265. |
[12] | HUANG Kaiyue, LI Xueqing, HAN Gouxin, ZHANG Qinxiu. Meta-analysis of acupoint catgut embedding in the treatment of allergic rhinitis based on the theory of “lung and spleen” [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 266-274. |
[13] | ZHU Zhengru, ZHANG Xiaobing. Meta-analysis of the curative effect of traditional Chinese medicine decoction combined with conventional western medicine on allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 281-289. |
[14] | DI Yu,LI Ying. Research progress in the inflammatory reaction and anti-inflammatory treatments in dry eye [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 144-150. |
[15] | ZHANG Yi, WANG Wenjun,YANG Anhuai. Research progress of SIRT1 activation by resveratrol in ocular diseases [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 151-156. |
|