Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2021, Vol. 35 ›› Issue (2): 136-140.doi: 10.6040/j.issn.1673-3770.0.2020.285
Previous Articles Next Articles
ZHANG Xuping1,2, LIU Xuexia3Overview,ZHANG Hua2Guidance
CLC Number:
[1] Barnes PJ. The cytokine network in asthma and chronic obstructive pulmonary disease[J]. J Clin Invest, 2008, 118(11): 3546-3556. doi:10.1172/JCI36130. [2] Hardman CS, Chen YL, Salimi M, et al. CD1a presentation of endogenous antigens by group 2 innate lymphoid cells? [J]. Sci Immunol, 2017, 2(18): eaan5918. doi:10.1126/sciimmunol.aan5918. [3] Nocera AL, Mueller SK, Stephan JR, et al. Exosome swarms eliminate airway pathogens and provide passive epithelial immunoprotection through nitric oxide[J]. J Allergy Clin Immunol, 2019, 143(4): 1525-1535.e1. doi:10.1016/j.jaci.2018.08.046. [4] Du YM, Zhuansun YX, Chen R, et al. Mesenchymal stem cell exosomes promote immunosuppression of regulatory T cells in asthma[J]. Exp Cell Res, 2018, 363(1): 114-120. doi:10.1016/j.yexcr.2017.12.021. [5] Sims B, Farrow AL, Williams SD, et al. Role of TIM-4 in exosome-dependent entry of HIV-1 into human immune cells[J]. Int J Nanomedicine, 2017, 12: 4823-4833. doi:10.2147/IJN.S132762. [6] Hough KP, Trevor JL, Strenkowski JG, et al. Exosomal transfer of mitochondria from airway myeloid-derived regulatory cells to T cells[J]. Redox Biol, 2018, 18: 54-64. doi:10.1016/j.redox.2018.06.009. [7] Okada N, Nakayama T, Asaka D, et al. Distinct gene expression profiles and regulation networks of nasal polyps in eosinophilic and non-eosinophilic chronic rhinosinusitis[J]. Int Forum Allergy Rhinol, 2018, 8(5): 592-604. doi:10.1002/alr.22083. [8] Wong WY, Lee MM, Chan BD, et al. Proteomic profiling of dextran sulfate sodium induced acute ulcerative colitis mice serum exosomes and their immunomodulatory impact on macrophages[J]. Proteomics, 2016, 16(7): 1131-1145. doi:10.1002/pmic.201500174. [9] Bryniarski K, Ptak W, Martin E, et al. Free extracellular miRNA functionally targets cells by transfecting exosomes from their companion cells[J]. PLoS One, 2015, 10(4): e0122991. doi:10.1371/journal.pone.0122991. [10] Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends[J]. J Cell Biol, 2013, 200(4): 373-383. doi:10.1083/jcb.201211138. [11] Real JM, Ferreira LRP, Esteves GH, et al. Exosomes from patients with septic shock convey miRNAs related to inflammation and cell cycle regulation: new signaling pathways in sepsis?[J]. Crit Care, 2018, 22(1): 68. doi:10.1186/s13054-018-2003-3. [12] Ruffner MA, Kim SH, Bianco NR, et al. B7-1/2, but not PD-L1/2 molecules, are required on IL-10-treated tolerogenic DC and DC-derived exosomes for in vivo function[J]. Eur J Immunol, 2009, 39(11): 3084-3090. doi:10.1002/eji.200939407. [13] Nazimek K, Askenase PW, Bryniarski K. Antibody light chains dictate the specificity of contact hypersensitivity effector cell suppression mediated by exosomes[J]. Int J Mol Sci, 2018, 19(9). doi:10.3390/ijms19092656. doi:10.3390/ijms19092656. [14] Lal CV, Olave N, Travers C, et al. Exosomal microRNA predicts and protects against severe bronchopulmonary dysplasia in extremely premature infants[J]. JCI Insight, 2018, 3(5): 93994. doi:10.1172/jci.insight.93994. [15] Alvarez S, Suazo C, Boltansky A, et al. Urinary exosomes as a source of kidney dysfunction biomarker in renal transplantation[J]. Transplant Proc, 2013, 45(10): 3719-3723. doi:10.1016/j.transproceed.2013.08.079. [16] Yamada Y, Limmon GV, Zheng DH, et al. Major shifts in the spatio-temporal distribution of lung antioxidant enzymes during influenza pneumonia[J]. PLoS One, 2012, 7(2): e31494. doi:10.1371/journal.pone.0031494. [17] Tyanova S, Temu T, Sinitcyn P, et al. The Perseus computational platform for comprehensive analysis of(prote)omics data[J]. Nat Methods, 2016, 13(9): 731-740. doi:10.1038/nmeth.3901. [18] Ziady AG, Hansen J. Redox balance in cystic fibrosis[J]. Int J Biochem Cell Biol, 2014, 52: 113-123. doi:10.1016/j.biocel.2014.03.006. [19] 刘芳兵. 炎症小体来源的外泌体激活巨噬细胞NF-κB信号通路[D]. 合肥: 安徽医科大学, 2018. [20] Irvin C, Zafar I, Good J, et al. Increased frequency of dual-positive TH2/TH17 cells in bronchoalveolar lavage fluid characterizes a population of patients with severe asthma[J]. J Allergy Clin Immunol, 2014, 134(5): 1175-1186.e7. doi:10.1016/j.jaci.2014.05.038. [21] Deshane JS, Redden DT, Zeng MQ, et al. Subsets of airway myeloid-derived regulatory cells distinguish mild asthma from chronic obstructive pulmonary disease[J]. J Allergy Clin Immunol, 2015, 135(2): 413-424.e15. doi:10.1016/j.jaci.2014.08.040. [22] Zhao K, Liang GX, Sun X, et al. Comparative miRNAome analysis revealed different miRNA expression profiles in bovine sera and exosomes[J]. BMC Genomics, 2016, 17(1): 630. doi:10.1186/s12864-016-2962-1. [23] Taverna S, Amodeo V, Saieva L, et al. Exosomal shuttling of miR-126 in endothelial cells modulates adhesive and migratory abilities of chronic myelogenous leukemia cells[J]. Mol Cancer, 2014, 13: 169. doi:10.1186/1476-4598-13-169. [24] Qiao YM, Liang X, Yan YJ, et al. Identification of exosomal miRNAs in rats with pulmonary neutrophilic inflammation induced by zinc oxide nanoparticles[J]. Front Physiol, 2018, 9: 217. doi:10.3389/fphys.2018.00217. [25] Real JM, Ferreira LRP, Esteves GH, et al. Exosomes from patients with septic shock convey miRNAs related to inflammation and cell cycle regulation: new signaling pathways in sepsis?[J]. Crit Care, 2018, 22(1): 68. doi:10.1186/s13054-018-2003-3. [26] Gon Y, Maruoka S, Inoue T, et al. Selective release of miRNAs via extracellular vesicles is associated with house-dust mite allergen-induced airway inflammation[J]. Clin Exp Allergy, 2017, 47(12): 1586-1598. doi:10.1111/cea.13016. [27] Agarwal AR, Yin F, Cadenas E. Metabolic shift in lung alveolar cell mitochondria following acrolein exposure[J]. Am J Physiol Lung Cell Mol Physiol, 2013, 305(10): L764-L773. doi:10.1152/ajplung.00165.2013. [28] Elahi FM, Farwell DG, Nolta JA, et al. Preclinical translation of exosomes derived from mesenchymal stem/stromal cells[J]. Stem Cells, 2020, 38(1): 15-21. doi:10.1002/stem.3061. [29] 边晓敏, 韩光红. 细胞外囊泡在头颈部肿瘤中的研究进展[J]. 山东大学耳鼻喉眼学报, 2020, 34(1): 99-104. doi:10.6040/j.issn.1673-3770.0.2019.370. BIAN Xiaomin, HAN Guanghong. Recent advances regarding extracellular vesicles in head and neck cancers[J]. J Otolaryngol Ophthalmol Shandong Univ, 2020, 34(1): 99-104. doi:10.6040/j.issn.1673-3770.0.2019.370. [30] Keller MD, Ching KL, Liang FX, et al. Decoy exosomes provide protection against bacterial toxins[J]. Nature, 2020, 579(7798): 260-264. doi:10.1038/s41586-020-2066-6. |
[1] | AO Tian,CHENG Lei. An endotype study of chronic rhinosinusitis with nasal polyps and precise control and treatment under the guidance [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 7-14. |
[2] | SHI Shuai, ZHENG Quan,CHENG Lei. Research advances of dupilumab in the treatment of chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 36-42. |
[3] | HUANG Danyi, ZHANG Ting,CHEN Jing, ZHANG Wei. Progress of research regarding the role of the epithelial barrier in chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 78-83. |
[4] | WANG Na,CHAI Xiangbin. Research progress on prostate-derived ETS factor in asthma and inflammatory diseases of the nasal mucosa [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 136-141. |
[5] | DI Yu,LI Ying. Research progress in the inflammatory reaction and anti-inflammatory treatments in dry eye [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 144-150. |
[6] | ZHANG Yi, WANG Wenjun,YANG Anhuai. Research progress of SIRT1 activation by resveratrol in ocular diseases [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 151-156. |
[7] | WANG Junxin,SUN Yan. Research progress of miRNA-29b involved in EMT-related signaling pathway regulation [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(6): 132-137. |
[8] | LI Huajing, HAO Runmei, DAI Hao, ZHANG Ling, SHEN Zhen, QUAN Fang, SHAO Yuan. Mechanism of inhibition of ovalbumin-induced inflammation by catechins in an OVA-induced mouse model of allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(4): 1-7. |
[9] | ZHANG Yiyi,XUE Gang, JIN Chunting. Research progress of exosomes in thyroid cancers [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(2): 131-135. |
[10] | ZHU ZhengruOveriew,ZHANG XiaobingGuidance. Correlation between high-mobility group box-1 and allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(6): 123-128. |
[11] | BIAN Xiaomin, HAN Guanghong, YU Dan. Recent advances regarding extracellular vesicles in head and neck cancers [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(1): 99-104. |
[12] | YANG Yifan, CHENG Lei. Rhinosinusitis and asthma in children: united airway disease [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(6): 10-15. |
[13] | XIE Yi, HAN Fengchan. Role of miRNAs in inner ear development and apoptosis or regeneration of auditory hair cells [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(2): 126-129. |
[14] | Li SHA,Chuanhe LIU. Research progress in the treatment of bronchial asthma with biological agents [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(1): 53-58. |
[15] | JIANG Xiaodan, DONG Qingzhe, DANG Zhihong, LI Shenling, MIAO Yu, ZHAO Han, ZHANG Niankai. Dose-dependent effects of exogenous IL-17A on airway inflammatory responses in mice with allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2018, 32(6): 73-78. |
|