Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2024, Vol. 38 ›› Issue (5): 112-118.doi: 10.6040/j.issn.1673-3770.0.2023.448
• Review • Previous Articles
LI Yu, LIU Hao, WANG Min, FU Xiaolong, LI Wen
CLC Number:
[1] Cortada M, Levano S, Bodmer D. mTOR signaling in the inner ear as potential target to treat hearing loss[J]. Int J Mol Sci, 2021, 22(12): 6368. doi:10.3390/ijms22126368 [2] Nadol JB Jr. Comparative anatomy of the cochlea and auditory nerve in mammals[J]. Hear Res, 1988,34(3):253-266. doi: 10.1016/0378-5955(88)90006-8 [3] ZHANG Wei, WANG Hongfang, XU Baohua. Overview of the main molecular mechanisms of biological aging[J]. Current Biotechnology, 2023, 13(2): 228-233. doi:10.19586/j.2095-2341.2022.0170 [4] Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and disease[J]. Cell, 2017, 168(6): 960-976. doi:10.1016/j.cell.2017.02.004 [5] WANG Zhen, YANG Luo, LIAO Min, et al. Research progress of mTOR pathway in pathogenesis of diabetic nephropathy[J]. Current Biotechnology, 2021, 11(3): 316-321. doi:10.19586/j.2095-2341.2020.0157 [6] Wei J J, Liu S W, Duan R X, et al. Research progress of mTOR in diabetic vascular disease [J]. Chinese Journal of Medical Molecular Biology,202,19(5):421-425.(in Chinese)doi:10.3870/j.issn.1672-8009.2022.05.012 [7] Murugan AK. mTOR: role in cancer, metastasis and drug resistance[J]. Semin Cancer Biol, 2019, 59: 92-111. doi:10.1016/j.semcancer.2019.07.003 [8] Tuo YL, Xiang M. mTOR: a double-edged sword for diabetes[J]. J Leukoc Biol, 2019, 106(2): 385-395. doi:10.1002/JLB.3MR0317-095RR [9] Laplante M, Sabatini DM. mTOR signaling in growth control and disease[J]. Cell, 2012, 149(2): 274-293. doi:10.1016/j.cell.2012.03.017 [10] YAO Ruiyuan, WEI Hongyuan, LEI Jinye, et al. Progress on the role of mTOR signaling pathway in the pathogenesis and regulatory mechanisms[J]. Chinese Bulletin of Life Sciences, 2019, 31(2): 135-142. doi:10.13376/j.cbls/2019020 [11] SU Jie, YANG Fuyu, LI Meng, et al. GLP-1 protected the diabetic retinopathy through induction of autophagy in rats[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 30-34. doi:10.6040/j.issn.1673-3770.0.2021.125 [12] LANG Zhengrong, CHENG Gui, ZHANG Tao. Research progress on the relationship between cisplatin ototoxicity and autophagy[J]. Journal of Clinical Otorhinolaryngology Head and Neck Surgery, 2020, 34(2): 189-192. doi:10.13201/j.issn.1001-1781.2020.02.023 [13] Chen Y, Yu L. Autophagic lysosome reformation[J]. Exp Cell Res, 2013, 319(2): 142-146. doi:10.1016/j.yexcr.2012.09.004 [14] Li W, Li Y, Guan Y, et al. TNFAIP8L2/TIPE2 impairs autolysosome reformation via modulating the RAC1-MTORC1 axis[J]. Autophagy, 2021,17(6):1410-1425. doi: 10.1080/15548627.2020.1761748 [15] Suto T, Karonitsch T. The immunobiology of mTOR in autoimmunity[J]. J Autoimmun, 2020, 110: 102373. doi:10.1016/j.jaut.2019.102373 [16] Jiang H, Sha SH, Schacht J. Kanamycin alters cytoplasmic and nuclear phosphoinositide signaling in the organ of Corti in vivo[J]. J Neurochem, 2006, 99(1): 269-276. doi:10.1111/j.1471-4159.2006.04117.x [17] Tisi A, Ramekers D, Flati V, et al. mTOR signaling in BDNF-treated guinea pigs after ototoxic deafening[J]. Biomedicines, 2022, 10(11): 2935. doi:10.3390/biomedicines10112935 [18] García-Mato á, Cervantes B, Rodríguez-de la Rosa L, et al. IGF-1 controls metabolic homeostasis and survival in HEI-OC1 auditory cells through AKT and mTOR signaling[J]. Antioxidants(Basel), 2023, 12(2): 233. doi:10.3390/antiox12020233 [19] Cortada M, Levano S, Hall MN, et al. mTORC2 regulates auditory hair cell structure and function[J]. iScience, 2023, 26(9): 107687. doi:10.1016/j.isci.2023.107687 [20] Kim HJ, Woo HM, Ryu J, et al. Conditional deletion of pten leads to defects in nerve innervation and neuronal survival in inner ear development[J]. PLoS One, 2013, 8(2): e55609. doi:10.1371/journal.pone.0055609 [21] Leitmeyer K, Glutz A, Radojevic V, et al. Inhibition of mTOR by rapamycin results in auditory hair cell damage and decreased spiral ganglion neuron outgrowth and neurite formation in vitro[J]. Biomed Res Int, 2015, 2015: 925890. doi:10.1155/2015/925890 [22] Shu YL, Li WY, Huang MQ, et al. Renewed proliferation in adult mouse cochlea and regeneration of hair cells[J]. Nat Commun, 2019, 10: 5530. doi:10.1038/s41467-019-13157-7 [23] Li XJ, Doetzlhofer A. LIN28B/let-7 control the ability of neonatal murine auditory supporting cells to generate hair cells through mTOR signaling[J]. Proc Natl Acad Sci USA, 2020, 117(36): 22225-22236. doi:10.1073/pnas.2000417117 [24] Zhang Z, Gao S, Hu YN, et al. Ti3 C2 tx MXene composite 3D hydrogel potentiates mTOR signaling to promote the generation of functional hair cells in cochlea organoids[J]. Adv Sci(Weinh), 2022, 9(32): e2203557. doi:10.1002/advs.202203557 [25] Ye B, Wang Q, Hu H, et al. Restoring autophagic flux attenuates cochlear spiral ganglion neuron degeneration by promoting TFEB nuclear translocation via inhibiting MTOR[J]. Autophagy, 2019,15(6):998-1016.doi: 10.1080/15548627.2019.1569926 [26] Xiong W, Wei W, Qi Y, et al. Autophagy is required for remodeling in postnatal developing ribbon synapses of cochlear inner hair cells[J]. Neuroscience, 2020, 431: 1-16. doi:10.1016/j.neuroscience.2020.01.032 [27] Gao L, Kita T, Katsuno T, et al. Insulin-like growth factor 1 on the maintenance of ribbon synapses in mouse cochlear explant cultures[J]. Front Cell Neurosci, 2020, 14: 571155. doi:10.3389/fncel.2020.571155 [28] Varela-Nieto I, Murillo-Cuesta S, Calvino M, et al. Drug development for noise-induced hearing loss[J]. Expert Opin Drug Discov, 2020, 15(12): 1457-1471. doi:10.1080/17460441.2020.1806232 [29] YANG Kun, CHEN Lijuan, HE Xiaodan, et al. Comparative study of ototoxicity between kanamycin and 2-hydroxypropyl-β-cyclodextrin[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(4): 6-11. doi:10.6040/j.issn.1673-3770.0.2021.195 [30] HE Jingchun, RUAN Qingwei, HAN Miaomiao, et al. Establishment of sensorineural deafness model in C57 mice by cisplatin[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2014, 28(1): 1-5.doi: 10.6040/j.issn.1673-3770.0.2013.237 [31] Bodmer D, Levano-Huaman S. Sesn2/AMPK/mTOR signaling mediates balance between survival and apoptosis in sensory hair cells under stress[J]. Cell Death Dis, 2017, 8(10): e3068. doi:10.1038/cddis.2017.457 [32] Kim YC, Guan KL. mTOR: a pharmacologic target for autophagy regulation[J]. J Clin Invest, 2015, 125(1): 25-32. doi:10.1172/jci73939 [33] ZHOU Jiamin, SONG Yuwan, SUN Yan. Research progress of pyroptosis in senile degenerative diseases[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(4): 172-180. doi:10.6040/j.issn.1673-3770.0.2022.090 [34] GAO Xianting, LU Ling. Advances in the analysis and prevention of presbycusis[J]. International Journal of Otolaryngology-Head and Neck Surgery, 2018, 42(3): 174-178. doi:10.3760/cma.j.issn.1673-4106.2018.03.011 [35] Harrison DE, Strong R, Sharp ZD, et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice[J]. Nature, 2009, 460: 392-395. doi:10.1038/nature08221 [36] Johnson SC, Rabinovitch PS, Kaeberlein M. mTOR is a key modulator of ageing and age-related disease[J]. Nature, 2013, 493: 338-345. doi:10.1038/nature11861 [37] Someya S, Yu W, Hallows WC, et al. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction[J]. Cell, 2010, 143(5): 802-812. doi:10.1016/j.cell.2010.10.002 [38] Altschuler RA, Kabara L, Martin C, et al. Rapamycin added to diet in late mid-life delays age-related hearing loss in UMHET4 mice[J]. Front Cell Neurosci, 2021, 15: 658972. doi:10.3389/fncel.2021.658972 [39] Guo L, Cao W, Niu Y, et al. Autophagy regulates the survival of hair cells and spiral ganglion neurons in cases of noise, ototoxic drug, and age-induced sensorineural hearing loss[J]. Front Cell Neurosci, 2021, 15: 760422. doi:10.3389/fncel.2021.760422 [40] Fu X, Sun X, Zhang L, et al. Tuberous sclerosis complex-mediated mTORC1 overactivation promotes age-related hearing loss[J]. J Clin Invest, 2018, 128(11): 4938-4955. doi:10.1172/jci98058 [41] Zhang Y, Lv Z, Liu Y, et al. PIN1 protects hair cells and auditory HEI-OC1 cells against senescence by inhibiting the PI3K/akt/mTOR pathway[J]. Oxid Med Cell Longev, 2021, 2021: 9980444. doi:10.1155/2021/9980444 [42] Liu H, Li F, Li X, et al. Rapamycin ameliorates age-related hearing loss in C57BL/6J mice by enhancing autophagy in the SGNs[J]. Neurosci Lett, 2022, 772: 136493. doi:10.1016/j.neulet.2022.136493 |
[1] | YANG Min, ZHU Xiaoyan, WANG Xu. Progress in metabolomics research in sensorineural hearing loss [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(2): 113-121. |
[2] | ZHANG Yanhong, LI Juanjuan, ZENG Xianhai, GOU Lingshan, WANG Zhaoxia, WEI Jianfang, MA Fang, QIU Shuqi. Clinical application of target gene panel testing in genetic diagnosis of deafness [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(4): 27-34. |
[3] | Kaili SUN,Xiaoyuan WU,Xu BIE,Xiuzhen SUN. Clinical analysis of cochlear implants in 16 patients with large vestibular aqueduct syndrome [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(5): 48-51. |
[4] | Yiliang YE,Biaoqing LU. Therapeutic outcome analysis of 704 cases of sudden deafness [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(5): 44-47. |
[5] | Qingxiu YAO,Hui WANG,Zhuangzhuang LI,Dongzhen YU,Shankai YIN. Preliminary study on screening cochlear proteins interacting with myosin VI [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(5): 40-43. |
[6] | ZHANG Junjun, LIU Haili, LIU Jiafu, QIN Xiaofeng, DU Hongming, WANG Houhui. Clinical efficacy and safety of different methods of administration of glucocorticoids in the treatment of sudden deafness [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(4): 52-55. |
[7] | TONG Qiaozhen, ZHAO Yan, CHENG Sihua. The constructive and mediating effects of knowledge/attitude/belief/practice interference on negative emotion in patients with sudden deafness [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(4): 162-164. |
[8] | Xiaosheng ZHONG,Haidi YANG,Yiqing ZHENG. Treatment and outcome of tinnitus in sudden deafness [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(4): 43-46. |
[9] | Fangzhou QIAN,Xiaobo HUANG,Qinjun WEI,Zhibin CHEN. Temporal and spatial expression of the deafness-causing gene EYA4 during the embryonic development of zebrafish [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(3): 49-55. |
[10] | Xingkuan BU. WHO program on the prevention of deafness and China's response and role [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(3): 3-8. |
[11] | XU Ming, LUO Xinggu, TANG Hongbo, JIANG Qingshan. Clinical characteristics and prognostic factors for sudden idiopathic sensorineural hearing loss in children [J]. J Otolaryngol Ophthalmol Shandong Univ, 2018, 32(5): 41-44. |
[12] | CHEN Wei, HU Zhongnan, TONG Zhaojun, LI Xiangyu, LIU Wenjun. Characteristics of auditory brainstem response to high-frequency stimulus in young and middle-aged patients with sudden deafness and no history of vertigo or cardiocerebrovascular disease [J]. J Otolaryngol Ophthalmol Shandong Univ, 2018, 32(5): 45-49. |
[13] | ZHU Wenyan, JIN Xin, SHE Wandong, MA Yongchi. Assessment of psychopathological characteristics in 30 patients with sudden sensorineural hearing loss [J]. J Otolaryngol Ophthalmol Shandong Univ, 2018, 32(5): 50-52. |
[14] | HUANG Fang, ZHENG Zhijuan, XIE Lei. Relationship of anxiety and depression with illness stage in patients with sudden hearing loss and its influencing factors [J]. J Otolaryngol Ophthalmol Shandong Univ, 2018, 32(4): 1-6. |
[15] | SONG Feng, GAN Bin, XU Anting, WANG Jian. Long-term low intensity noise exposure reduce the number of ribbon synapses in guinea pigs. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(5): 41-44. |
|