Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2024, Vol. 38 ›› Issue (2): 113-121.doi: 10.6040/j.issn.1673-3770.0.2023.263

• Review • Previous Articles     Next Articles

Progress in metabolomics research in sensorineural hearing loss

YANG Min, ZHU Xiaoyan, WANG Xu   

  1. Department of Otorhinolaryngology, Nanjing University of Traditional Chinese Medicine, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing 210014, Jiangsu, China
  • Online:2024-03-20 Published:2024-03-29

Abstract: Sensorineural hearing loss is a common clinical disease in otology, which is hearing loss or hearing loss caused by cochlea, auditory nerve or auditory center organic lesions, and its incidence is related to genetics, age, noise exposure, ototoxic drugs and other factors, and the current incidence is increasing year by year and showing a younger trend. Metabolomics is a life science research that uses high-throughput omics technology to identify and quantify all metabolites, and has been applied to the pathophysiological mechanism of the inner ear in recent years, metabolomics provides new ideas for etiological exploration from the perspective of metabolic changes, and its research problems include analyzing the association between metabolites and sensorineural hearing loss, discovering new metabolic markers, and finding new strategies for preventing and treating sensorineural hearing loss. The application of metabolomics in sensorineural hearing loss contributes to the early diagnosis, individualized treatment and prediction of sensorineural hearing loss. In this paper, the research progress of metabolomics of sensorineural hearing loss is reviewed at home and abroad, and the experimental methods and results of clinical trials and animal experiments are integrated and analyzed, in order to provide a basis for the research and clinical application of metabolomics of sensorineural hearing loss, and put forward a prospect.

Key words: Sensorineural hearing loss, Metabolomics, Review, Biomarkers

CLC Number: 

  • R764.43
[1] 塞娜, 韩维举. 感音神经性聋相关内耳免疫及炎症机制的研究进展[J]. 中华耳科学杂志, 2018, 16(2): 221-226. doi:10.3969/j.issn.1672-2922.2018.02.018 SAI Na, HAN Weiju. Mechanisms of inner ear immune and inflammation related to sensorineural hearing loss[J]. Chinese Journal of Otology, 2018, 16(2): 221-226. doi:10.3969/j.issn.1672-2922.2018.02.018
[2] 王香香, 孙建军, 刁明芳. 氧化应激在感音神经性耳聋中的作用机制[J]. 中国听力语言康复科学杂志, 2023, 21(1): 56-60. doi:10.3969/j.issn.1672-4933.2023.01.014 WANG Xiangxiang, SUN Jianjun, DIAO Mingfang. Mechanisms of oxidative stress in sensorineural deafness[J]. Chinese Scientific Journal of Hearing and Speech Rehabilitation, 2023, 21(1): 56-60. doi:10.3969/j.issn.1672-4933.2023.01.014
[3] 唐菲, 杨崇灵, 刘昭颖, 等. 人工耳蜗植入术前筛查的注意事项[J]. 中国听力语言康复科学杂志, 2023, 21(1): 97-100. doi:10.3969/j.issn.1672-4933.2023.01.026 TANG Fei, YANG Chongling, LIU Zhaoying, et al. The issues relating to preoperative screening of cochlear implantation[J]. Chinese Scientific Journal of Hearing and Speech Rehabilitation, 2023, 21(1): 97-100. doi:10.3969/j.issn.1672-4933.2023.01.026
[4] Ren HM, Hu B, Jiang GL. Advancements in prevention and intervention of sensorineural hearing loss[J]. Ther Adv Chronic Dis, 2022, 13: 20406223221104987. doi:10.1177/20406223221104987
[5] Noto A, Piras C, Atzori L, et al. Metabolomics in otorhinolaryngology[J]. Front Mol Biosci, 2022, 9: 934311. doi:10.3389/fmolb.2022.934311
[6] Roberts LD, Souza AL, Gerszten RE, et al. Targeted metabolomics[J]. Curr Protoc Mol Biol, 2012, Chapter 30: Unit30.2.1-Unit30.224. doi:10.1002/0471142727.mb3002s98
[7] Gika HG, Zisi C, Theodoridis G, et al. Protocol for quality control in metabolic profiling of biological fluids by U(H)PLC-MS[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2016, 1008: 15-25. doi:10.1016/j.jchromb.2015.10.045
[8] Zhang W, Ramautar R. CE-MS for metabolomics: developments and applications in the period 2018-2020[J]. Electrophoresis, 2021, 42(4): 381-401. doi:10.1002/elps.202000203
[9] Wishart DS. NMR metabolomics: a look ahead[J]. J Magn Reson, 2019, 306: 155-161. doi:10.1016/j.jmr.2019.07.013
[10] Papadimitropoulos ME P, Vasilopoulou CG, Maga-Nteve C, et al. Untargeted GC-MS metabolomics[J]. Methods Mol Biol, 2018, 1738: 133-147. doi:10.1007/978-1-4939-7643-0_9
[11] 金拓, 高卫萍. 代谢组学在干眼研究中的应用进展[J]. 眼科新进展, 2022, 42(4): 329-332. doi:10.13389/j.cnki.rao.2022.0066 JIN Tuo, GAO Weiping. Advances in the application of metabolomics in dry eye research[J]. Recent Advances in Ophthalmology, 2022, 42(4): 329-332. doi:10.13389/j.cnki.rao.2022.0066
[12] Schrimpe-Rutledge AC, Codreanu SG, Sherrod SD, et al. Untargeted metabolomics strategies-challenges and emerging directions[J]. J Am Soc Mass Spectrom, 2016, 27(12): 1897-1905. doi:10.1007/s13361-016-1469-y
[13] 王治财, 仓彦. 代谢组学在冠状动脉粥样硬化性心脏病中的研究进展[J]. 安徽医药, 2023, 27(7): 1293-1297. doi:10.3969/j.issn.1009-6469.2023.07.005 WANG Zhicai, CANG Yan. Research progress on metabonomics of coronary heart disease[J]. Anhui Medical and Pharmaceutical Journal, 2023, 27(7): 1293-1297. doi:10.3969/j.issn.1009-6469.2023.07.005
[14] 黄文洁, 吴绍文, 刘蕊, 等. 基于质谱的代谢组学数据分析技术研究进展[J]. 广东农业科学, 2022, 49(11): 96-109. doi:10.16768/j.issn.1004-874X.2022.11.011 HUANG Wenjie, WU Shaowen, LIU Rui, et al. Progress in mass spectrometry-based metabolomics data analysis techniques[J]. Guangdong Agricultural Sciences, 2022, 49(11): 96-109. doi:10.16768/j.issn.1004-874X.2022.11.011
[15] Boullaud L, Blasco H, Trinh TT, et al. Metabolomic studies in inner ear pathologies[J]. Metabolites, 2022, 12(3): 214. doi:10.3390/metabo12030214
[16] Pudrith C, Dudley WN. Sensorineural hearing loss and volatile organic compound metabolites in urine[J]. Am J Otolaryngol, 2019, 40(3): 409-412. doi:10.1016/j.amjoto.2019.03.001
[17] Kaderbay A, Berger F, Bouamrani A, et al. Perilymph metabolomic and proteomic MALDI-ToF profiling with porous silicon chips: a proof-of-concept study[J]. Hear Res, 2022, 417: 108457. doi:10.1016/j.heares.2022.108457
[18] Peter MS, Warnecke A, Staecker H. A window of opportunity: perilymph sampling from the round window membrane can advance inner ear diagnostics and therapeutics[J]. J Clin Med, 2022, 11(2): 316. doi:10.3390/jcm11020316
[19] Trinh TT, Blasco H, Emond P, et al. Relationship between metabolomics profile of perilymph in cochlear-implanted patients and duration of hearing loss[J]. Metabolites, 2019, 9(11): 262. doi:10.3390/metabo9110262
[20] Wang LB, Liu Y, Wu LJ, et al. Sialyltransferase inhibition and recent advances[J]. Biochim Biophys Acta, 2016, 1864(1): 143-153. doi:10.1016/j.bbapap.2015.07.007
[21] Natarajan N, Batts S, Stankovic KM. Noise-induced hearing loss[J]. J Clin Med, 2023, 12(6): 2347. doi:10.3390/jcm12062347
[22] Mao HY, Chen Y. Noise-induced hearing loss: updates on molecular targets and potential interventions[J]. Neural Plast, 2021: 4784385. doi:10.1155/2021/4784385
[23] 吉佳慧, 苗龙, 万柳, 等. 噪声暴露对大鼠代谢组学的影响[J]. 环境与职业医学, 2020, 37(5): 433-439.?doi:10.13213/j.cnki.jeom.2020.20059 JI Jiahui, MIAO Long, WAN Liu, et al. Metabolomic effects of noise exposure on rats[J]. Journal of Environmental and Occupational Medicine, 2020, 37(5): 433-439. doi:10.13213/j.cnki.jeom.2020.20059
[24] Miao L, Wang BS, Zhang J, et al. Plasma metabolomic profiling in workers with noise-induced hearing loss: a pilot study[J]. Environ Sci Pollut Res Int, 2021, 28(48): 68539-68550. doi:10.1007/s11356-021-15468-z
[25] Zhang XZ, Li NN, Cui YN, et al. Plasma metabolomics analyses highlight the multifaceted effects of noise exposure and the diagnostic power of dysregulated metabolites for noise-induced hearing loss in steel workers[J]. Front Mol Biosci, 2022, 9: 907832. doi:10.3389/fmolb.2022.907832
[26] Ji LC, Lee HJ, Wan GQ, et al. Auditory metabolomics, an approach to identify acute molecular effects of noise trauma[J]. Sci Rep, 2019, 9(1): 9273. doi:10.1038/s41598-019-45385-8
[27] Boullaud L, Blasco H, Caillaud E, et al. Immediate-early modifications to the metabolomic profile of the perilymph following an acoustic trauma in a sheep model[J]. J Clin Med, 2022, 11(16): 4668. doi:10.3390/jcm11164668
[28] Miao L, Zhang J, Yin LH, et al. Metabolomics analysis reveals alterations in cochlear metabolic profiling in mice with noise-induced hearing loss[J]. Biomed Res Int, 2022: 9548316. doi:10.1155/2022/9548316
[29] He J, Zhu YJ, Aa JY, et al. Brain metabolic changes in rats following acoustic trauma[J]. Front Neurosci, 2017, 11: 148. doi:10.3389/fnins.2017.00148
[30] Fujita T, Yamashita D, Irino Y, et al. Metabolomic profiling in inner ear fluid by gas chromatography/mass spectrometry in guinea pig cochlea[J]. Neurosci Lett, 2015, 606: 188-193. doi:10.1016/j.neulet.2015.09.001
[31] PirttilöK, Videhult Pierre P, Hagläf J, et al. An LCMS-based untargeted metabolomics protocol for cochlear perilymph: highlighting metabolic effects of hydrogen gas on the inner ear of noise exposed guinea pigs[J]. Metabolomics, 2019, 15(10): 138. doi:10.1007/s11306-019-1595-1
[32] Tripathi P, Deshmukh P. Sudden sensorineural hearing loss: a review[J]. Cureus, 2022, 14(9): e29458. doi:10.7759/cureus.29458
[33] Wang XS, Gao Y, Jiang RR. Diagnostic and predictive values of serum metabolic profiles in sudden sensorineural hearing loss patients[J]. Front Mol Biosci, 2022, 9: 982561. doi:10.3389/fmolb.2022.982561
[34] 王思琪. 基于液相色谱—质谱联用技术的突发性聋血浆代谢组学初步研究[D]. 南京: 东南大学, 2021
[35] Xiong H, Lai L, Ye YY, et al. Glucose protects cochlear hair cells against oxidative stress and attenuates noise-induced hearing loss in mice[J]. Neurosci Bull, 2021, 37(5): 657-668. doi:10.1007/s12264-020-00624-1
[36] 龙梦琦, 冯永, 吴学文. 氧化应激相关基因多态性与突发性聋的研究进展[J]. 中华耳科学杂志, 2020, 18(2): 358-362. doi:10.3969/j.issn.1672-2922.2020.02.027 LONG Mengqi, FENG Yong, WU Xuewen. Progress in research on oxidative stress-related gene polymorphisms and sudden sensorineural hearing loss[J]. Chinese Journal of Otology, 2020, 18(2): 358-362. doi:10.3969/j.issn.1672-2922.2020.02.027
[37] 顾向阳, 柯红林, 曹明根. 突发性聋患者血液流变学特性及脂代谢研究[J]. 中国耳鼻咽喉头颈外科, 2012, 19(9): 487-489. doi:10.16066/j.1672-7002.2012.09.009 GU Xiangyang, KE Honglin, CAO Minggen. Hemorheology and lipid metabolism of sudden deafness[J]. Chinese Archives of Otolaryngology-Head and Neck Surgery, 2012, 19(9): 487-489. doi:10.16066/j.1672-7002.2012.09.009
[38] Rashnuodi P, Amiri A, Omidi M, et al. The effects of dyslipidemia on noise-induced hearing loss in petrochemical workers in the Southwest of Iran[J]. Work, 2021, 70(3): 875-882. doi:10.3233/WOR-213607
[39] Carta F, Lussu M, Bandino F, et al. Metabolomic analysis of urine with Nuclear Magnetic Resonance spectroscopy in patients with idiopathic sudden sensorineural hearing loss: a preliminary study[J]. Auris Nasus Larynx, 2017, 44(4): 381-389. doi:10.1016/j.anl.2016.10.003
[40] Mirsalehi M, Ghajarzadeh M, Farhadi M, et al. Intratympanic corticosteroid injection as a first-line treatment of the patients with idiopathic sudden sensorineural hearing loss compared to systemic steroid: a systematic review and meta-analysis[J]. Am J Otolaryngol, 2022, 43(5): 103505. doi:10.1016/j.amjoto.2022.103505
[41] Rojas-Morales P, Pedraza-Chaverri J, Tapia E. Ketone bodies, stress response, and redox homeostasis[J]. Redox Biol, 2020, 29: 101395. doi:10.1016/j.redox.2019.101395
[42] Puchalska P, Crawford PA. Metabolic and signaling roles of ketone bodies in health and disease[J]. Annu Rev Nutr, 2021, 41: 49-77. doi:10.1146/annurev-nutr-111120-111518
[43] 王青玲, 郭向东. 老年性聋发病机制的研究进展[J]. 听力学及言语疾病杂志, 2022, 30(1): 96-100. doi:10.3969/j10.3969/j.issn.1006-7299.2022.01.024 WANG Qingling, GUO Xiangdong. Research progress on the pathogenesis of presbycusis[J]. Journal of Audiology and Speech Pathology, 2022, 30(1): 96-100. doi:10.3969/j10.3969/j.issn.1006-7299.2022.01.024
[44] Wang C, Qiu JJ, Li GJ, et al. Application and prospect of quasi-targeted metabolomics in age-related hearing loss[J]. Hear Res, 2022, 424: 108604. doi:10.1016/j.heares.2022.108604
[45] 赵艳, 蒋军, 陈学敏, 等. 耳毒性药物的种类及其对内耳的损伤机制与预防[J]. 西北国防医学杂志, 2019, 40(11): 718-723. doi:10.16021/j.cnki.1007-8622.2019.11.013 ZHAO Yan, JIANG Jun, CHEN Xuemin, et al. Types of ototoxic drugs and mechanisms of inner ear injury and its prevention[J]. Medical Journal of National Defending Forces in Northwest China, 2019, 40(11): 718-723. doi:10.16021/j.cnki.1007-8622.2019.11.013
[46] Videhult Pierre P, Haglöf J, Linder B, et al. Cisplatin-induced metabolome changes in serum: an experimental approach to identify markers for ototoxicity[J]. Acta Otolaryngol, 2017, 137(10): 1024-1030. doi:10.1080/00016489.2017.1325006
[47] Balram A, Thapa S, Chatterjee S. Glycosphingolipids in diabetes, oxidative stress, and cardiovascular disease: prevention in experimental animal models[J]. Int J Mol Sci, 2022, 23(23): 15442. doi:10.3390/ijms232315442
[48] Fransson AE, Kisiel M, Pirttilä K, et al. Hydrogen inhalation protects against ototoxicity induced by intravenous cisplatin in the guinea pig[J]. Front Cell Neurosci, 2017, 11: 280. doi:10.3389/fncel.2017.00280
[49] 杨琨, 陈利娟, 何小丹, 等. 卡那霉素和2-羟丙基-β-环糊精耳毒性的比较研究[J]. 山东大学耳鼻喉眼学报, 2022, 36(4): 6-11. doi:10.6040/j.issn.1673-3770.0.2021.195 YANG Kun, CHEN Lijuan, HE Xiaodan, et al. Comparative study of ototoxicity between kanamycin and 2-hydroxypropyl-β-cyclodextrin[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(4): 6-11. doi:10.6040/j.issn.1673-3770.0.2021.195
[50] 戚国伟, 于宁, 杨仕明, 等. 代谢组学技术在噪声性聋研究中的应用[J]. 中华耳科学杂志, 2022, 20(2): 242-246. doi:10.3969/j.issn.1672-2922.2022.02.015 QI Guowei, YU Ning, YANG Shiming, et al. Application of metabolomics in research on noise induced hearing loss[J]. Chinese Journal of Otology, 2022, 20(2): 242-246. doi:10.3969/j.issn.1672-2922.2022.02.015
[51] Roccio M, Edge ASB. Inner ear organoids: new tools to understand neurosensory cell development, degeneration and regeneration[J]. Development, 2019, 146(17): dev177188. doi:10.1242/dev.177188
[1] WANG Lu, ZHANG Yunyun, GUO Hua, CUI Xiaochuan. Application value of lipid metabolism markers for the early screening of Alzheimer's disease in obstructive sleep apnea patients [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(6): 68-74.
[2] ZHANG Zhuping, YE Qi, GUO Bei, LIN Ling. Diagnostic utility of folate receptor-positive circulating tumor cells in patients with laryngeal squamous cell carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(5): 50-53.
[3] HAO Hong, CHEN Gang, WANG Lin’e. Key candidate genes associated with the molecular mechanisms of adenoid cystic carcinoma identified by bioinformatics [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(5): 99-106.
[4] HUANG Lan, GAO WeiOverview,CHEN GanggangGuidance. Research progress on the pathogenesis and clinical characteristics of BPPV secondary to inner ear diseases [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(4): 108-113.
[5] HU Chunyan, DANG Panhong, ZHANG Rui, FAN Mengyun. Analysis of audiological and imaging characteristics of 149 children with unilateral sensorineural hearing loss [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(1): 31-36.
[6] RAN Hongyun, JIANG Keke,,ZHANG Jie. Analysis of underlying factors of refractive errors in infants with retinopathy of prematurity [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(5): 118-124.
[7] XIAO Shuifang, ZHANG Junbo. Further standardized promotion of the application of radiofrequency coblation in otorhinolaryngology, head and neck surgery [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(2): 1-8.
[8] XIAO Xili, NIE Yuxiao, CHEN Jie. Visual analysis of domestic studies on dry eye syndrome in the past ten years using Citespace [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(2): 86-97.
[9] ZHANG Yiyi,XUE Gang, JIN Chunting. Research progress of exosomes in thyroid cancers [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(2): 131-135.
[10] TAN Yufang, YI Tianhua. Clinical characteristics and prognosis of sudden sensorineural hearing loss in post-irradiated nasopharyngeal carcinoma survivors: a report of 18 cases [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(1): 35-39.
[11] XIANG Liulan, YE Yuanhang,JIANG Luyun, LIU Yang. Elucidating the role and mechanism of Tim-3 in allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(6): 118-122.
[12] . Clinical value of vestibular evoked myogenic potential to predict prognosis of unilateral idiopathic sudden sensorineural hearing loss [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(5): 27-32.
[13] . Relationship between prognosis and vestibular symptoms/function in patients with unilateral profound sudden sensorineural hearing loss: A retrospective analysis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(5): 33-38.
[14] ObjectiveTo compare the effects of intra-arterial thrombolysis and traditional treatment in central retinal artery occlusion(CRAO). MethodsWe searched the Pubmed, Embase,, CNKI, and Wan Fang databases for related studies that were published up to May , . We included clinical controls that compared intra-arterial thrombolysis and conventional treatment in CRAO. The random effect model and R software were used for data analysis. ResultsWe identified seven studies including CRAO patients. Meta-analysis results of two randomized controlled trials(RCTs)showed that there was no significant difference in visual acuity improvement between CRAO patients treated with arterial thrombolysis therapy and those with conventional therapy(RR: ., % confidence interval .-., P=.). Meta-analysis results of five cohort studies indicated that compared with conventional therapy, arterial thrombolysis therapy significantly improved visual acuity(RR: ., % confidence interval .-., P<.). The difference between thrombolysis therapy and conventional therapy may be caused by the different treatment time windows in patients. Concerning the adverse reactions after treatment, two RCTs and five cohort studies showed that the adverse reactions in the thrombolysis group are significantly higher than those in the conventional treatment group. ConclusionAlthough intra-arterial thrombolysis therapy has therapeutic potential in CRAO patients, there is still insufficient clinical evidence to prove its effectiveness and safety. Further studies with a large sample and high quality RCTs are required.. Intra-arterial thrombolysis for central retinal artery occlusion: a Meta-analysisCHEN Xi, LI Shanshan, ZHAO Lu, YOU Ran, WANG Yanling Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, ChinaAbstract: [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(4): 28-34.
[15] SONG Xicheng, ZHENG Haitao. A review of autofluorescence imaging of the parathyroid gland [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(3): 19-25.
Full text



[3] ZHOU Bin,LI Bin . Endoscopic sinus surgery for 75 patients with chronic sinusitis and nasal polyps[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(1): 24 -26 .
[4] XU Sainan,YANG Lei . Apoptosis of epithelial cells in nasal polyps promoted by erythromycin[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(1): 27 -29 .
[6] LIU Lian-he . Treatment of deep neck abscess in 37 cases[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(2): 180 -181 .
[8] QIAO Yi,NI Guan-sen,CHEN Wen-wen . Effect of H-UPPP and nasal operations on obstructive sleep apnea syndrome in 38 cases
[9] WANG Xiao-feng,LIN Chang,CHENG Jin-mei . Expression of ABAD in inner ears and its clinical significance in different age mice[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 207 -211 .
[10] FAN Qi-jun,HUANG Zhi-wu,MEI Ling,XIAO Bo-kui . Expression of the heat shock protein 27 in rat cochlea induced by sodium salicylate injection by the FQ-PCR technique[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 212 -214 .