Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2025, Vol. 39 ›› Issue (2): 145-151.doi: 10.6040/j.issn.1673-3770.0.2024.036

• Review • Previous Articles     Next Articles

Research progress of machine learning prediction model in clinical application of sudden deafness

LI Peipei1, LU Yanqing2, HOU Nan3   

  1. 1. Department of Otorhinolaryngology & Head and Neck Surgery , The First Affiliated Hospital, Chengdu Medical College, Chengdu 610500, Sichuan, China 2. Department of Otorhinolaryngology, Banan Hospital, Chongqing Medical University, Chongqing 401320, China3. Department of Otolaryngology , Sichuan Taikang Hospital, Chengdu 610213, Sichuan, China
  • Published:2025-03-26

Abstract: Due to the unclear aetiology and pathogenesis of sudden deafness, there is still no uniform treatment plan at home and abroad. In the face of different sudden deafness patients, it is not possible to directly estimate the effective prognosis of patients and formulate the most suitable treatment plan for patients. With the development of big data and the computer information age, the application of artificial intelligence represented by machine learning(ML)can help transform patient education and joint decision-making between doctors and patients from an abstract concept into a concrete operable form, so as to evaluate the prognosis and effectiveness of diseases and formulate treatment plans for diseases. The purpose of this paper is to review the whole process of ML prediction model construction and its application to sudden deafness, with the aim of providing relevant reference information for clinical staff to evaluate the curative effect of sudden deafness and make plans, so as to better realise joint decision-making between doctors and patients and improve the curative effect of sudden deafness.

Key words: Sudden deafness, Machine learning, Forecast

CLC Number: 

  • R764.35
[1] Chandrasekhar SS, Tsai Do BS, Schwartz SR, et al. Clinical practice guideline: sudden hearing loss(update)[J]. Otolaryngol Head Neck Surg, 2019, 161(1_suppl): S1-S45. doi:10.1177/0194599819859885
[2] Kim SY, Min CY, Lee CH, et al. Bidirectional relation between depression and sudden sensorineural hearing loss: two longitudinal follow-up studies using a national sample cohort[J]. Sci Rep, 2020, 10(1): 1482. doi:10.1038/s41598-020-58547-w
[3] Chandrasekhar SS, Tsai Do BS, Schwartz SR, et al. Clinical Practice Guideline: Sudden Hearing Loss(Update)[J]. Otolaryngol Head Neck Surg, 2019,161(1_suppl):S1-S45. doi: 10.1177/0194599819859885
[4] Chow N, Gallo L, Busse JW. Evidence-based medicine and precision medicine: complementary approaches to clinical decision-making[J]. Precis Clin Med, 2018, 1(2): 60-64. doi:10.1093/pcmedi/pby009
[5] Sajjadian M, Lam RW, Milev R, et al. Machine learning in the prediction of depression treatment outcomes: a systematic review and meta-analysis[J]. Psychol Med, 2021, 51(16): 2742-2751. doi:10.1017/S0033291721003871
[6] Velde HM, Rademaker MM, Damen J, et al. Prediction models for clinical outcome after cochlear implantation: a systematic review[J]. J Clin Epidemiol, 2021, 137: 182-194. doi:10.1016/j.jclinepi.2021.04.005
[7] 夏静. 基于有限数据的临床预测模型研究[D]. 杭州: 浙江大学, 2019.
[8] 郑帅, 黄韬, 杨瑞, 等. 多变量选择方法在临床预测模型中的验证: 基于MIMIC数据库[J]. 中国循证医学杂志, 2021, 21(12): 1463-1467. doi:10.7507/1672-2531.202107175 ZHENG Shuai, HUANG Tao, YANG Rui, et al. Validation of multivariate selection method in clinical prediction models: based on MIMIC database[J]. Chinese Journal of Evidence-Based Medicine, 2021, 21(12): 1463-1467. doi:10.7507/1672-2531.202107175
[9] Adams ST, Leveson SH. Clinical prediction rules[J]. BMJ, 2012, 344: d8312. doi:10.1136/bmj.d8312
[10] Aho K, Derryberry D, Peterson T. Model selection for ecologists: the worldviews of AIC and BIC[J]. Ecology, 2014, 95(3): 631-636. doi:10.1890/13-1452.1
[11] Ahmed N, Abbasi MS, Zuberi F, et al. Artificial intelligence techniques: analysis, application, and outcome in dentistry-a systematic review[J]. Biomed Res Int, 2021, 2021: 9751564. doi:10.1155/2021/9751564
[12] Cho Y, Kim J, Oh SJ, et al. Clinical features and prognosis of severe-to-profound sudden sensorineural hearing loss[J]. Am J Otolaryngol, 2022, 43(3): 103455. doi:10.1016/j.amjoto.2022.103455
[13] 郑重, 沈颖, 夏俍, 等. 全频型突发性聋的疗效影响因素分析[J]. 中华耳科学杂志, 2020, 18(1): 74-79. doi:10.3969/j.issn.1672-2922.2020.01.013 ZHENG Zhong, SHEN Ying, XIA Liang, et al. Analysis of factors affecting treatment outcomes in all frequency sudden sensorineural hearing loss[J]. Chinese Journal of Otology, 2020, 18(1): 74-79. doi:10.3969/j.issn.1672-2922.2020.01.013
[14] Lam M, Bao YY, Hua GB, et al. Sudden sensorineural hearing loss and metabolic syndrome: a systematic review and meta-analysis[J]. Otol Neurotol, 2021, 42(9): 1308-1313. doi:10.1097/MAO.0000000000003302
[15] 杨峻豪, 高敏琦, 张秋静. 肾功能不全患者突发性耳聋的诊疗进展[J]. 中华耳科学杂志, 2022, 20(3): 471-475. doi:10.3969/j.issn.1672-2922.2022.03.019 YANG Junhao, GAO Minqi, ZHANG Qiujing. Progress in diagnosis and treatment of sudden sensorineural hearing loss in patients with renal insufficiency[J]. Chinese Journal of Otology, 2022, 20(3): 471-475. doi:10.3969/j.issn.1672-2922.2022.03.019
[16] Ha SM, Hwang KR, Park IH, et al. Circulating microRNAs as potentially new diagnostic biomarkers of idiopathic sudden sensorineural hearing loss[J]. Acta Otolaryngol, 2020, 140(12): 1013-1020. doi:10.1080/00016489.2020.1810859
[17] Troiano G, Nibali L, Petsos H, et al. Development and international validation of logistic regression and machine-learning models for the prediction of 10-year molar loss[J]. J Clin Periodontol, 2023, 50(3): 348-357. doi:10.1111/jcpe.13739
[18] Zhao Y, Zhang RS, Zhong Y, et al. Statistical analysis and machine learning prediction of disease outcomes for COVID-19 and pneumonia patients[J]. Front Cell Infect Microbiol, 2022, 12: 838749. doi:10.3389/fcimb.2022.838749
[19] Cervantes J, Garcia-Lamont F, Rodríguez-Mazahua L, et al. A comprehensive survey on support vector machine classification: applications, challenges and trends[J]. Neurocomputing, 2020, 408: 189-215. doi:10.1016/j.neucom.2019.10.118
[20] 崔静静, 胡泽文, 任萍. 基于决策树和逻辑回归模型的人工智能领域潜在“精品” 论文识别研究[J]. 情报科学, 2022, 40(5): 90-96. doi:10.13833/j.issn.1007-7634.2022.05.012 CUI Jingjing, HU Zewen, REN Ping. Identification of “hidden treasures” among massive literature from artificial intelligence field based on decision tree and logistic regression[J]. Information Science, 2022, 40(5): 90-96. doi:10.13833/j.issn.1007-7634.2022.05.012
[21] Yu XH, Wang T, Huang SP, et al. How can gene-expression information improve prognostic prediction in TCGA cancers: an empirical comparison study on regularization and mixed cox models[J]. Front Genet, 2020, 11: 920. doi:10.3389/fgene.2020.00920
[22] Yeo CD, Yeom SW, You YS, et al. Association of sudden sensorineural hearing loss with increased risk of insomnia: a nationwide population-based cohort study[J]. J Clin Sleep Med, 2022, 18(5): 1335-1342. doi:10.5664/jcsm.9864
[23] Lin SC, Lin MY, Kang BH, et al. Artificial neural network-assisted classification of hearing prognosis of sudden sensorineural hearing loss with Vertigo[J]. IEEE J Transl Eng Health Med, 2023, 11: 170-181. doi:10.1109/JTEHM.2023.3242339
[24] Doubleday K, Zhou J, Zhou H, et al. Risk controlled decision trees and random forests forprecision Medicine[J]. Stat Med, 2022, 41(4): 719-735. doi:10.1002/sim.9253
[25] Chang YS, Park H, Hong SH, et al. Predicting cochlear dead regions in patients with hearing loss through a machine learning-based approach: a preliminary study[J]. PLoS One, 2019, 14(6): e0217790. doi:10.1371/journal.pone.0217790
[26] Miron M, Moldovanu S, tef nescu BI, et al. A new approach in detectability of microcalcifications in the placenta during pregnancy using textural features and K-nearest neighbors algorithm[J]. J Imaging, 2022, 8(3): 81. doi:10.3390/jimaging8030081
[27] Hohmann E. Editorial commentary: big data and machine learning in medicine[J]. Arthroscopy, 2022, 38(3): 848-849. doi:10.1016/j.arthro.2021.10.008
[28] 黄英辉, 李立奇, 罗万春. 支持向量机在临床疾病诊断中的应用[J]. 数学的实践与认识, 2008, 38(23): 101-103. HUANG Yinghui, LI Liqi, LUO Wanchun. The use of SVM in the clinical disease diagnosis[J]. Mathematics in Practice and Theory, 2008, 38(23): 101-103.
[29] Rodríguez-Pérez R, Bajorath J. Evolution of support vector machine and regression modeling in chemoinformatics and drug discovery[J]. J Comput Aided Mol Des, 2022, 36(5): 355-362. doi:10.1007/s10822-022-00442-9
[30] Liu L, Fan J, Zhan H, et al. Abnormal regional signal in the left cerebellum as a potential neuroimaging biomarker of sudden sensorineural hearing loss[J]. Front Psychiatry, 2022, 13: 967391. doi:10.3389/fpsyt.2022.967391
[31] Mac A, Xu T, Wu JKY, et al. Deep learning using multilayer perception improves the diagnostic acumen of spirometry: a single-centre Canadian study[J]. BMJ Open Respir Res, 2022, 9(1): e001396. doi:10.1136/bmjresp-2022-001396
[32] Basheer IA, Hajmeer M. Artificial neural networks: fundamentals, computing, design, and application[J]. J Microbiol Methods, 2000, 43(1): 3-31. doi:10.1016/s0167-7012(00)00201-3
[34] Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks[J]. Commun ACM, 2017, 60(6): 84-90. doi:10.1145/3065386
[35] Esteva A, Robicquet A, Ramsundar B, et al. A guide to deep learning in healthcare[J]. Nat Med, 2019, 25(1): 24-29. doi:10.1038/s41591-018-0316-z
[36] 扈晓君, 杨宝栋. 基于深度学习的医学图像分析综述[J]. 电子技术与软件工程, 2021(18): 137-138. HU Xiaojun, YANG Baodong. Summary of medical image analysis based on deep learning[J]. Electronic Technology & Software Engineering, 2021(18): 137-138.
[37] Kim M, Lee HJ, Lee S, Lee J, Kang Y. Three-dimensional heavily T2-weighted FLAIR in the detection of blood-labyrinthine barrier leakage in patients with sudden sensorineural hearing loss: comparison with T1 sequences and application of deep learning-based reconstruction[J]. Eur Radiol, 2024. doi: 10.1007/s00330-023-10580-9
[38] Austin PC, Tu JV. Bootstrap methods for developing predictive models[J]. Am Stat, 2004, 58(2): 131-137. doi:10.1198/0003130043277
[39] Verhaeghe J, Dhaese SAM, De Corte T, et al. Development and evaluation of uncertainty quantifying machine learning models to predict piperacillin plasma concentrations in critically ill patients[J]. BMC Med Inform Decis Mak, 2022, 22(1): 224. doi:10.1186/s12911-022-01970-y
[40] Deutsch BC, Collopy C, Kallogjeri D, et al. Validation of hearing loss prediction tool for cisplatin chemotherapy and radiation in head and neck cancer treatment[J]. JAMA Otolaryngol Head Neck Surg, 2021, 147(2): 182-189. doi:10.1001/jamaoto.2020.4620
[41] Gittleman H, Sloan AE, Barnholtz-Sloan JS. An independently validated survival nomogram for lower-grade glioma[J]. Neuro Oncol, 2020, 22(5): 665-674. doi:10.1093/neuonc/noz191
[42] Simani L, Oron Y, Handzel O, et al. Evaluation of the quality of online information on sudden sensorineural hearing loss[J]. Otol Neurotol, 2022, 43(2): 159-164. doi:10.1097/MAO.0000000000003424
[43] Park KV, Oh KH, Jeong YJ, et al. Machine learning models for predicting hearing prognosis in unilateral idiopathic sudden sensorineural hearing loss[J]. Clin Exp Otorhinolaryngol, 2020, 13(2): 148-156. doi:10.21053/ceo.2019.01858
[44] Uhm T, Lee JE, Yi S, et al. Predicting hearing recovery following treatment of idiopathic sudden sensorineural hearing loss with machine learning models[J]. Am J Otolaryngol, 2021, 42(2): 102858. doi:10.1016/j.amjoto.2020.102858
[45] Lee MK, Jeon ET, Baek N, et al. Prediction of hearing recovery in unilateral sudden sensorineural hearing loss using artificial intelligence[J]. Sci Rep, 2022, 12(1): 3977. doi: 10.1038/s41598-022-07881-2
[46] Bing D, Ying J, Miao J, et al. Predicting the hearing outcome in sudden sensorineural hearing loss via machine learning models[J]. Clin Otolaryngol,2018,32(15):1125-1129. doi:10.13201/j.issn.1001-1781.2018.15.001
[47] 汪志伟, 陆月文, 窦晓辉, 等. 基于人工智能下突发性聋与血清指标的相关因素分析[J]. 临床耳鼻咽喉头颈外科杂志, 2020, 34(11): 977-980. doi:10.13201/j.issn.2096-7993.2020.11.004 WANG Zhiwei, LU Yuewen, DOU Xiaohui, et al. Analysis of related factors between sudden sensorineural hearing loss and serum indices base on artificial intelligence and big data[J]. Journal of Clinical Otorhinolaryngology Head and Neck Surgery, 2020, 34(11): 977-980. doi:10.13201/j.issn.2096-7993.2020.11.004
[1] XU Haiyan, CAO Wei, FAN Dachuan. Efficacy of compound sound therapy for patients with tinnitus and sudden deafness [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(4): 38-45.
[2] SUN Yongqiang, SONG Zhongyi, WANG Chunfang, LI Xiao, FU Ying, PAN Xinliang. Prognosis and influencing factors in sudden deafness patients with acoustic stapedius reflex threshold [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(2): 7-14.
[3] LIU Jiayu, FAN Huiming, ZOU You, CHEN Shiming. Research progress on the application of artificial intelligence in the diagnosis and treatment of nasopharyngeal carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(2): 135-142.
[4] SHI Anni, ZHANG Jiajia, BAI Peng, ZHANG Chongyang. Analysis of a therapeutic modality for sudden deafness utilizing neck acupuncture comprising seven lines of treatment [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(4): 103-107.
[5] Huang Tianze, Chen Di,LI Ying. Advances of machine learning in the diagnosis of ocular surface diseases and guiding corneal surgical procedures [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(6): 13-19.
[6] WANG Di, CHENG Jinzhang,YU Dan. Application of artificial intelligence based on machine learning in clinical diagnosis and treatment in otolaryngology [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(6): 125-131.
[7] LI Jingjing, WU Xinxin, MAO Ning, ZHENG Guibin, MU Yakui, CHU Tongpeng, JIA Chuanliang, ZHENG Haitao, MI Jia, SONG Xicheng. CT-based radiomics nomogram for the preoperative prediction of central lymph node metastases of papillary thyroid carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(4): 51-59.
[8] LIN Yushan, LU Biaoqing. Treatment of sudden seafness by heart and spleen [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(6): 6-11.
[9] Yiliang YE,Biaoqing LU. Therapeutic outcome analysis of 704 cases of sudden deafness [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(5): 44-47.
[10] Xiaosheng ZHONG,Haidi YANG,Yiqing ZHENG. Treatment and outcome of tinnitus in sudden deafness [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(4): 43-46.
[11] ZHAO Junying, WANG Jianming. Correlation between unilateral sudden deafness and imaging features of vertebrobasilar artery [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(4): 47-51.
[12] ZHANG Junjun, LIU Haili, LIU Jiafu, QIN Xiaofeng, DU Hongming, WANG Houhui. Clinical efficacy and safety of different methods of administration of glucocorticoids in the treatment of sudden deafness [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(4): 52-55.
[13] TONG Qiaozhen, ZHAO Yan, CHENG Sihua. The constructive and mediating effects of knowledge/attitude/belief/practice interference on negative emotion in patients with sudden deafness [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(4): 162-164.
[14] CHEN Wei, HU Zhongnan, TONG Zhaojun, LI Xiangyu, LIU Wenjun. Characteristics of auditory brainstem response to high-frequency stimulus in young and middle-aged patients with sudden deafness and no history of vertigo or cardiocerebrovascular disease [J]. J Otolaryngol Ophthalmol Shandong Univ, 2018, 32(5): 45-49.
[15] ZHANG Yubo, YUE Liyan, YIN Xiaoyan, LÜ Zhe, SHAN Chunguang. Effect of tinnitus treatment instrument combined with Ginkgo biloba extract on hearing and hemorheology in patients with sudden deafness and tinnitus. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(5): 50-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WAN Li-jia,LU Hai-tao,JIANG Yi-dao,LIU Hui,LI Qin,SHE La-zhi . Effect of H-uvulopalatopharyngoplasty on obstructive sleep apnea
hypopnea syndrome
[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 204 -205 .
[2] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 222 -224 .
[3] JI Xiao-bin,DENG Jia-de,ZANG Lin-quan,WANG Lei,XIE Jun . Blood histamine in guinea pigs with allergic rhinitis[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 228 -230 .
[4] XIANG Deng,LU Yong-tian,SUN Huan-ji . Endoscopic repair for cerebrospinal fluid rhinorrhea in 19 cases and a literature review [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 234 -236 .
[5]
YIN Guo-hua,ZHONG Xiao . Long-term effect of laser reduction on lingua adenoids
[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 280 -282 .
[6] LIU Lian-he . Clinical analysis of 21 cases of neck cut injury[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 283 -284 .
[7]

CAI Qian,SU Zhen-zhong,WEN Wei-ping,CHAI Li-ping,YE Hui,TENG Yi-shu,WU Xuan

. Relationship between adult snoring and oropharyngeal stenosis scoring[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(4): 289 -292 .
[8] CHU Jiu-sheng,HUANG Yong-jiu,BAO Xue-li,TIAN Wei-zhong . Thyroglossal duct carcinoma: one case report and a literature review[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(4): 322 -324 .
[9] ZHANG Ji-zhong,LI Da-jian . Chondroseptum or ethmoid in repairing of nasal septum perforation under endoscopy[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(4): 336 -337 .
[10]

ZHANG Duan-he,CHEN Jian-ping,MA Zheng-wang,WANG Cheng,WANG Hu-guo

. Dissociated or rotary flap transplantation in treatment of nasal and facial injuries[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(4): 338 -339 .