山东大学耳鼻喉眼学报 ›› 2018, Vol. 32 ›› Issue (6): 26-29.doi: 10.6040/j.issn.1673-3770.0.2018.278

• 论著 • 上一篇    下一篇

切取悬吊拉伸法在犬喉中段声带固有张力测量中的应用

徐宏鸣1,陈淑梅1,蒋钰钢2,李晓艳1   

  1. 1.上海市儿童医院, 上海交通大学附属儿童医院耳鼻咽喉头颈外科, 上海 200062;
    2. 山东交通学院工程机械学院, 山东 济南 250357
  • 发布日期:2018-11-29
  • 通讯作者: 李晓艳. E-mail:lixy@shchildren.com.cn
  • 作者简介:徐宏鸣. E-mail:xuhongming@188.com
  • 基金资助:
    国家自然科学基金青年项目(81500779);上海市卫生计生委科研课题青年项目(20144Y0260)

Measurement of canine vocal fold intrinsic tension using weights suspension method

XU Hongming1, CHEN Shumei1, JIANG Yugang2, LI Xiaoyan1   

  1. School of Construction Machinery, Shandong Jiaotong University, Jinan 250357, Shandong, China
  • Published:2018-11-29

摘要: 目的 探讨切取悬吊拉伸法在犬喉中段声带固有张力测量中的应用效果。 方法 切取游离的犬喉中段声带(包括完整的声带5层结构),用悬吊拉伸的方法将声带样本拉升至原有长度,通过拉伸所需要的砝码质量测量其固有张力。测量喉腔样本的主要几何参数,评估样本的可靠性。 结果 将声带样本悬吊拉伸至固有10 mm长度所需要的砝码质量均数为22.06 g。所需砝码质量与实验动物的体质量及体型大小无相关关系(P=0.985)。实验测量的主要几何参数与文献报道较为一致。 结论 切取悬吊拉伸可较为精确测量出犬喉中段声带的固有张力。

关键词: 声带张力, 犬, 喉腔

Abstract: Objective To measure the intrinsic tension of central part canine vocal fold. Methods Weights suspension method was employed to stretch the excised canine vocal fold(including the entire five-story structure)to its' original length, using the weights mass to evaluate the intrinsic vocal fold tension. Major geometrical parameter of the canine vocal folds were measured and compare to those reported by literatures to assess the reliability of the samples. Results The average weights mass used to stretch the suspended vocal fold sample was 22.06 g. Vocal fold tension was showed to have no correlational relationship with the weight of experimental canines. Major geometricalparameterof these canine vocal folds correspond with those reported by literatures. Conclusion The intrinsic tension of middle part canine vocal fold which is necessary in establishing vocal fold finite element model can be measured by weights suspension method.

Key words: Vocal fold tension, Canine, Larynx

中图分类号: 

  • R767
[1] Zhang Z. Restraining mechanisms in regulating glottal closure during phonation[J]. J Acoust Soc Am, 2011, 130(6):4010-4019.
[2] Titze IR, Talkin DT. A theoretical study of the effects of various laryngeal configurations on the acoustics of phonation[J]. J Acoust Soc Am, 1979, 66(1):60-74.
[3] Hirano M. Morphological structure of the vocal cord as a vibrator and its variations[J]. Folia Phoniatr(Basel), 1974, 26(2):89-94.
[4] Van den Berg J, Tan TS. Results of experiments with human larynxes[J]. Pract Otorhinolaryngol(Basel), 1959, 21:425-450.
[5] Xu H, Dong P, Sun Z, et al. An empirical study of modified frontolateral partial laryngectomy without tracheotomy[J]. Exp Ther Med, 2013, 5(2):523-526.
[6] Xu H, Kvit AA, Devine EE, et al. Voice outcome of modified frontolateral partial laryngectomy in excised canine larynges and finite element model.[J]. Otolaryngol Head Neck Surg, 2014, 151(2):294-300.
[7] Yin J, Zhang Z. The influence of thyroarytenoid and cricothyroid muscle activation on vocal fold stiffness and eigenfrequencies[J]. J Acoust Soc Am, 2013, 133(5):2972-2983.
[8] Garcia-Lopez I, Penarrocha J, Gavilan J. Type Ⅲ thyroplasty for the treatment of high-pitched voice disorder[J]. Acta Otorrinolaringol Esp, 2010, 61(4):318-320.
[9] Kocak I, Dogan M, Tadihan E, et al. Window anterior commissure relaxation laryngoplasty in the management of high-pitched voice disorders[J]. Arch Otolaryngol Head Neck Surg, 2008, 134(12):1263-1269.
[10] Hong KH, Ye M, Kim YM, et al. Functional differences between the two bellies of the cricothyroid muscle[J]. Otolaryngol Head Neck Surg, 1998, 118(5):714-722.
[11] Jiang JJ, Chang CI, Raviv JR, et al. Quantitative study of mucosal wave via videokymography in canine larynges[J]. Laryngoscope, 2000, 110(9):1567-1573.
[12] Dong P, Li X, Xie J, et al. Modified frontolateral partial laryngectomy without tracheotomy[J]. Otolaryngol Head Neck Surg, 2009, 141(1):70-74.
[13] Chhetri DK, Neubauer J, Sofer E, et al. Influence and interactions of laryngeal adductors and cricothyroid muscles on fundamental frequency and glottal posture control[J]. J Acoust Soc Am, 2014, 135(4):2052-2064.
[14] Chhetri DK, Neubauer J, Berry DA. Neuromuscular control of fundamental frequency and glottal posture at phonation onset[J]. J Acoust Soc Am, 2012, 131(2):1401-1412.
[15] Birk V, Dollinger M, Sutor A, et al. Automated setup for ex vivo larynx experiments[J]. J Acoust Soc Am, 2017, 141(3):1349.
[16] Dion GR, Coelho PG, Teng S, et al. Dynamic nanomechanical analysis of the vocal fold structure in excised larynges[J]. Laryngoscope, 2017, 127(7):225-230.
[17] Tayama N, Chan RW, Kaga K, et al. Functional definitions of vocal fold geometry for laryngeal biomechanical modeling[J]. Ann Otol Rhinol Laryngol, 2002, 111(1):83-92.
[18] Tao C, Jiang JJ. A self-oscillating biophysical computer model of the elongated vocal fold[J]. Comput Biol Med, 2008, 38(11-12):1211-1217.
[1] 徐宏鸣,顾美珍,陈芳,蒋钰钢,李晓艳. 小儿喉腔三维有限元模型构建的方法及意义[J]. 山东大学耳鼻喉眼学报, 2018, 32(3): 82-85.
[2] 张庆泉,李新民,王 强,王有福 . 鼻内镜下犬齿窝径路治疗上颌窦病变[J]. 山东大学耳鼻喉眼学报, 2007, 21(1): 38-39 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!