山东大学耳鼻喉眼学报 ›› 2022, Vol. 36 ›› Issue (3): 237-244.doi: 10.6040/j.issn.1673-3770.0.2021.564

• 临床研究 • 上一篇    下一篇

臭氧对变应性鼻炎鼻黏膜NF-κB p65核蛋白表达及炎性因子的影响

孙娜1,黄昱1,章如新1,张雪琰1,牛越2,段玉森3,阚海东2   

  1. 1. 复旦大学附属华东医院 耳鼻咽喉科, 上海 200040;
    2. 复旦大学 公共卫生学院, 上海 200032;
    3. 上海市环境监测中心, 上海 200233
  • 发布日期:2022-06-15
  • 通讯作者: 章如新. E-mail:zhangruxin@hotmail.com
  • 基金资助:
    国家自然科学基金(81974140,81670906,81371078)

Effects of ozone on nuclear protein expression of NF-κB p65 in nasal mucosa and inflammatory factors in a rat model of allergic rhinitis

SUN Na1, HUANG Yu1, ZHANG Ruxin1, ZHANG Xueyan1, NIU Yue2, DUAN Yusen3, KAN Haidong2   

  1. 1. Department of Otorhinolaryngology, Huadong Hospital, Fudan University, Shanghai 200040, China;
    2. School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China;
    3. Shanghai Environmental Monitoring Center, Shanghai 200233, China
  • Published:2022-06-15

摘要: 目的 探讨臭氧吸入对变应性鼻炎(AR)鼻黏膜NF-κB p65核蛋白表达及炎性因子的影响。 方法 选取健康Sprague-Dawley雌性大鼠48只,每组8只,随机数字表法将其分为6组:正常对照组(NC组)、AR模型组(即AR组)、正常大鼠臭氧吸入暴露组(即NE组,浓度1 ppm)、AR低浓度臭氧吸入暴露组(即AREL组,浓度0.5 ppm)、AR中浓度臭氧吸入暴露组(即AREM组,浓度1 ppm)、AR高浓度臭氧吸入暴露组(即AREH组,浓度2 ppm)。采用卵清蛋白(ovalbumin, OVA)抗原联合氢氧化铝佐剂致敏法制备AR大鼠模型。在AR造模的全程同步进行臭氧吸入暴露。将臭氧吸入暴露实验组置入臭氧吸入暴露系统,进行不同浓度的臭氧暴露,2 h/d,共6周。观察各实验组AR症状,记录大鼠鼻部喷嚏、挠鼻次数,并测量鼻分泌物量。末次暴露的24 h后,收集鼻腔灌洗液和鼻黏膜组织。免疫蛋白印迹法(Western blot)检测鼻黏膜NF-κB p65核蛋白表达。实时定量PCR(qRT-PCR)检测鼻黏膜NF-κB靶基因IL-6、IL-8和肿瘤坏死因子-α(TNF-α)的mRNA表达。ELISA检测血清OVA特异性IgE(OVA-sIgE)和鼻腔灌洗液中的促炎因子IL-6、IL-8和TNF-α的蛋白含量。大鼠鼻黏膜经苏木素-伊红(HE)染色,观察鼻黏膜病理学改变。采用SPSS 20.0软件进行数据分析。 结果 AR大鼠不同浓度臭氧暴露组的喷嚏数量、挠鼻次数及鼻分泌物的量较NC和AR组均明显增加(P<0.05)。AR臭氧各浓度暴露组血清OVA-slgE含量高于AR组及NC组(P<0.05),且AREH组升高最明显。AREM和AREH组鼻黏膜的NF-κB p65胞核内蛋白表达高于AR(P<0.05)。AR臭氧暴露组鼻黏膜IL-6、IL-8和TNF-α的mRNA表达升高,鼻腔灌洗液中TNF-α、IL-6和IL-8蛋白含量升高,AREM和AREH组高于AR组及NC组(P<0.05),AREH组升高最明显。 结论 臭氧吸入暴露可促进AR的OVA-sIgE水平增高,促进炎性因子TNF-α、IL-6和IL-8的释放,导致鼻黏膜病理损害和AR症状加重。这一病理过程可能与臭氧激活AR大鼠鼻黏膜转录因子NF-κB核蛋白入核及其靶基因表达的变化有关。

关键词: 鼻炎,变应性, 臭氧, 炎性因子, NF-κB

Abstract: Objective This study aimed to investigate the effect of ozone on the pathogenesis and inflammatory factors in a rat model of allergic rhinitis. Methods Forty-eight healthy female Sprague Dawley rats were randomly divided into six groups: normal control group(NC group), allergic rhinitis(AR)model group, normal rat ozone inhalation exposure group(NE group, 1 ppm), AR model exposed to low concentration ozone group(AREL group and 0.5 ppm), AR model exposed to moderate concentration ozone group(AREM group, 1 ppm), and AR model exposed to high ozone concentrations(AREH group, 2 ppm). AR rat models were sensitized to ovalbumin(OVA). The rats were exposed to different concentrations of ozone using the prepared ozone inhalation exposure system for 2 h per day for 6 weeks consecutively. Within 15 min of the last OVA nasal challenge, the numbers of sneezes and scratches were recorded, and the amounts of nasal secretions were measured. Nasal lavage fluid and nasal mucosa were collected 24 h after the last exposure. Western blotting was performed to detect the protein expression of nuclear factor-kappa B(NF-κB)p65. Quantitative real-time PCR was used to detect the mRNA expression of the NF-κB target genes for tumor necrosis factor-alpha(TNF-α), interleukin(IL)-6, and IL-8 in the nasal mucosa. OVA-specific IgE levels and protein levels of the pro-inflammatory factors IL-6, IL-8, and TNF-α in nasal lavage fluid were determined by ELISA. Pathological changes in the nasal mucosa were assessed by hematoxylin and eosin staining. Statistical analyses and graphical representations were performed using SPSS 20.0. Results The frequency of sneezing, nasal scratching, and nasal secretion in rats with AR was higher in the ozone exposure group than in the AR and NC groups(P<0.05). The serum OVA slgE levels in the ARE group were higher than those in the AR and NC groups(P<0.05); the increase was most obvious in the AREH group. Nuclear protein expression of NF-κB p65 in the AREM and AREH groups was higher than that in the AR and NC groups(P<0.05). The mRNA expressions of IL-6, IL-8, and TNF-α in nasal mucosa and the protein content of IL-6, IL-8, and TNF-α in nasal lavage fluid were increased in the AR ozone exposure group. The nasal lavage fluid levels of IL-6, IL-8, and TNF-α were higher in the AREL group than in the NC group, and those in the medium- and high-concentration exposure groups were higher than those in the AR and NC groups(P<0.05). Conclusion Ozone inhalation can increase the serum OVA slgE of AR; promote the release of inflammatory factors TNF-α, IL-6, and IL-8; and lead to the aggravation of AR symptoms. This pathological process may be related to the transfer of NF-κB into the nucleus and expression of its target genes in nasal mucosa activated by ozone in AR rats.

Key words: Rhinitis, Allergic, Ozone, Inflammatory factors, NF-κB

中图分类号: 

  • R765.21
[1] Guo ZQ, Dong WY, Xu J, et al. T-helper type 1-T-helper type 2 shift and nasal remodeling after fine particulate matter exposure in a rat model of allergic rhinitis[J]. Am J Rhinol Allergy, 2017, 31(3): 148-155. doi:10.2500/ajra.2017.31.4437.
[2] Niu Y, Chen RJ, Xia YJ, et al. Personal ozone exposure and respiratory inflammatory response: the role of DNA methylation in the arginase-nitric oxide synthase pathway[J]. Environ Sci Technol, 2018, 52(15): 8785-8791. doi:10.1021/acs.est.8b01295.
[3] Gerrity TR, Weaver RA, Berntsen J, et al. Extrathoracic and intrathoracic removal of O3 in tidal-breathing humans[J]. J Appl Physiol(1985), 1988, 65(1): 393-400. doi:10.1152/jappl.1988.65.1.393.
[4] Hajat S, Haines A, Atkinson RW, et al. Association between air pollution and daily consultations with general practitioners for allergic rhinitis in London, United Kingdom[J]. Am J Epidemiol, 2001, 153(7): 704-714. doi:10.1093/aje/153.7.704.
[5] Naclerio R, Ansotegui IJ, Bousquet J, et al. International expert consensus on the management of allergic rhinitis(AR)aggravated by air pollutants: impact of air pollution on patients with AR: current knowledge and future strategies[J]. World Allergy Organ J, 2020, 13(3): 100106. doi:10.1016/j.waojou.2020.100106.
[6] 章如新, 江德胜, 李兆基, 等. P物质能神经阻滞剂治疗变应性鼻炎的实验研究[J]. 中华耳鼻咽喉科杂志, 1994, 29(5): 282-285. ZHANG Ruxin, JIANG Desheng, LI Zhaoji, et al. Experimental study on blocking agent of substance P nerves in the treatment of allergic rhinitis[J]. Chinese Journal of Otorhinolaryngology, 1994, 29(5): 282-285.
[7] Sun N, Deng CR, Zhao QB, et al. Ursolic acid alleviates mucus secretion and tissue remodeling in rat model of allergic rhinitis after PM2.5 exposure[J]. Am J Rhinol Allergy, 2021, 35(2): 272-279. doi:10.1177/1945892420953351.
[8] Wang H, Zhang RX, Wu J, et al. Knockdown of neurokinin-1 receptor expression by small interfering RNA prevents the development of allergic rhinitis in rats[J]. Inflamm Res, 2013, 62(10): 903-910. doi:10.1007/s00011-013-0649-5.
[9] Suleimani MA, Ying D, Walker MJA. A comprehensive model of allergic rhinitis in Guinea pigs[J]. J Pharmacol Toxicol Methods, 2007, 55(2): 127-134. doi:10.1016/j.vascn.2006.05.005.
[10] Kahle JJ, Neas LM, Devlin RB, et al. Interaction effects of temperature and ozone on lung function and markers of systemic inflammation, coagulation, and fibrinolysis: a crossover study of healthy young volunteers[J]. Environ Health Perspect, 2015, 123(4): 310-316. doi:10.1289/ehp.1307986.
[11] D'Amato G, Holgate ST, Pawankar R, et al. Meteorological conditions, climate change, new emerging factors, and asthma and related allergic disorders. A statement of the World Allergy Organization[J]. World Allergy Organ J, 2015, 8(1): 25. doi:10.1186/s40413-015-0073-0.
[12] Turner MC, Jerrett M, Pope CA 3rd, et al. Long-term ozone exposure and mortality in a large prospective study[J]. Am J Respir Crit Care Med, 2016, 193(10): 1134-1142. doi:10.1164/rccm.201508-1633OC.
[13] Smith GJ, Walsh L, Higuchi M, et al. Development of a large-scale computer-controlled ozone inhalation exposure system for rodents[J]. Inhal Toxicol, 2019, 31(2): 61-72. doi:10.1080/08958378.2019.1597222.
[14] Lee YL, Shaw CK, Su HJ, et al. Climate, traffic-related air pollutants and allergic rhinitis prevalence in middle-school children in Taiwan[J]. Eur Respir J, 2003, 21(6): 964-970. doi:10.1183/09031936.03.00094602.
[15] Mösges R, Klimek L. Today's allergic rhinitis patients are different: new factors that may play a role[J]. Allergy, 2007, 62(9): 969-975. doi:10.1111/j.1398-9995.2007.01440.x.
[16] Parker JD, Akinbami LJ, Woodruff TJ. Air pollution and childhood respiratory allergies in the United States[J]. Environ Health Perspect, 2009, 117(1): 140-147. doi:10.1289/ehp.11497.
[17] Kim BJ, Kwon JW, Seo JH, et al. Association of ozone exposure with asthma, allergic rhinitis, and allergic sensitization[J]. Ann Allergy Asthma Immunol, 2011, 107(3): 214-219.e1. doi:10.1016/j.anai.2011.05.025.
[18] Chen LC, Lippmann M. Inhalation toxicology methods: the generation and characterization of exposure atmospheres and inhalational exposures[J]. Curr Protoc Toxicol, 2015, 2(63): 24.4.1-24.4.23. doi:10.1002/0471140856.tx2404s63.
[19] Adams WC. Comparison of chamber and face-mask 6.6-hour exposures to ozone on pulmonary function and symptoms responses[J]. Inhal Toxicol, 2002, 14(7): 745-764. doi:10.1080/08958370290084610.
[20] Hatch GE, Duncan KE, Diaz-Sanchez D, et al. Progress in assessing air pollutant risks from in vitro exposures: matching ozone dose and effect in human airway cells[J]. Toxicol Sci, 2014, 141(1): 198-205. doi:10.1093/toxsci/kfu115.
[21] Terao. Cholesterol hydroperoxides and their degradation mechanism[J]. Subcell Biochem, 2014, 77: 83-91. doi:10.1007/978-94-007-7920-4_7.
[22] Barnes PJ, Adcock IM. NF-kappa B: a pivotal role in asthma and a new target for therapy[J]. Trends Pharmacol Sci, 1997, 18(2): 46-50. doi:10.1016/s0165-6147(97)89796-9.
[23] Wu WD, Doreswamy V, Diaz-Sanchez D, et al. GSTM1 modulation of IL-8 expression in human bronchial epithelial cells exposed to ozone[J]. Free Radic Biol Med, 2011, 51(2): 522-529. doi:10.1016/j.freeradbiomed.2011.05.006.
[24] Nichols BG, Woods JS, Luchtel DL, et al. Effects of ozone exposure on nuclear factor-kappaB activation and tumor necrosis factor-alpha expression in human nasal epithelial cells[J]. Toxicol Sci, 2001, 60(2): 356-362. doi:10.1093/toxsci/60.2.356.
[25] Wee JH, Zhang YL, Rhee CS, et al. Inhibition of allergic response by intranasal selective NF-κB decoy oligodeoxynucleotides in a murine model of allergic rhinitis[J]. Allergy Asthma Immunol Res, 2017, 9(1): 61-69. doi:10.4168/aair.2017.9.1.61.
[26] Lee HJ, Kim B, Im NR, et al. Decreased expression of E-cadherin and ZO-1 in the nasal mucosa of patients with allergic rhinitis: altered regulation of E-cadherin by IL-4, IL-5, and TNF-alpha[J]. Am J Rhinol Allergy, 2016, 30(3): 173-178. doi:10.2500/ajra.2016.30.4295.
[27] 张罗, 韩德民, 王琪. 鼻腔黏液纤毛传输系统的组成和纤毛运动状况评估[J]. 中国医学文摘(耳鼻咽喉科学), 2006, 21(3): 141-143. doi:10.19617/j.issn1001-1307.2006.03.006.
[1] 张雅琪,刘慧敏,曹淋曼,王子钰,林旭,李燕萍,薛刚,吴靖芳. MAPK、PI3K-AKT、NF-κB在小鼠过敏性鼻炎中的表达及意义[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 254-259.
[2] 郑雅霓, 刘鹤, 马亮, 张明生, 孙中武. 布地奈德联合生理盐水鼻腔冲洗对慢性鼻-鼻窦炎的疗效及对鼻腔分泌物IL-6、IL-8、TNF-α的影响[J]. 山东大学耳鼻喉眼学报, 2018, 32(3): 58-62.
[3] 李云秋,冯 永,王继华 . 鼻息肉中核因子κB亚单位P50活性与IL-4、γ-IFN因子表达的关系[J]. 山东大学耳鼻喉眼学报, 2008, 22(1): 48-51 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 董卫红,毕宏生,王兴荣,马先祯,杜秀娟,俞 超 . 玻璃体视网膜联合术治疗复杂性眼外伤52例[J]. 山东大学耳鼻喉眼学报, 2008, 22(4): 362 -365 .
[2] 王相如,蒋 华,张 霞,王晓莉 . 穿透角膜移植术各屈光变量及其相互关系[J]. 山东大学耳鼻喉眼学报, 2008, 22(4): 373 -375 .
[3] 田省霞,王小红,陈馨,曹连涛,薛琨 . 鼻内镜术后局部应用糖皮质激素治疗慢性[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 51 -52 .
[4] 殷济清 . 血府逐瘀胶囊治疗扁桃体炎、咽喉炎28例[J]. 山东大学耳鼻喉眼学报, 2006, 20(5): 477 -477 .
[5] 邢金燕,,陶爱林,张建国 . 变应性鼻炎的发病机制研究现状[J]. 山东大学耳鼻喉眼学报, 2006, 20(5): 451 -455 .
[6] 谢志刚, 张喜英 . 儿童及青少年鼻窦炎内窥镜术后鼻腔黏连的预防与处理[J]. 山东大学耳鼻喉眼学报, 2006, 20(3): 242 -243 .
[7] 冯云1,2 ,李文婷3 ,唐平章1 ,徐震纲1 ,张彬1 ,王乃利3
. 胸背动脉穿支皮瓣的解剖学研究
及其在头颈修复中的意义
[J]. 山东大学耳鼻喉眼学报, 2009, 23(2): 20 -23 .
[8] 梁利伟. 唇龈沟径路治疗鼻中隔软骨前脱位[J]. 山东大学耳鼻喉眼学报, 2009, 23(3): 50 -51 .
[9] 邓享坤,王金泉,邱志宏,邓秀玉. 鼻内镜下鼻腔鼻窦血管瘤切除术[J]. 山东大学耳鼻喉眼学报, 2010, 24(01): 43 .
[10] 赵振华1,王启荣1,刘树伟2,韩飞1,古林涛1,李晓1,陈志鹏1. 蝶窦冠状位薄层断层解剖学研究[J]. 山东大学耳鼻喉眼学报, 2010, 24(2): 35 -37 .