山东大学耳鼻喉眼学报 ›› 2022, Vol. 36 ›› Issue (3): 237-244.doi: 10.6040/j.issn.1673-3770.0.2021.564
孙娜1,黄昱1,章如新1,张雪琰1,牛越2,段玉森3,阚海东2
SUN Na1, HUANG Yu1, ZHANG Ruxin1, ZHANG Xueyan1, NIU Yue2, DUAN Yusen3, KAN Haidong2
摘要: 目的 探讨臭氧吸入对变应性鼻炎(AR)鼻黏膜NF-κB p65核蛋白表达及炎性因子的影响。 方法 选取健康Sprague-Dawley雌性大鼠48只,每组8只,随机数字表法将其分为6组:正常对照组(NC组)、AR模型组(即AR组)、正常大鼠臭氧吸入暴露组(即NE组,浓度1 ppm)、AR低浓度臭氧吸入暴露组(即AREL组,浓度0.5 ppm)、AR中浓度臭氧吸入暴露组(即AREM组,浓度1 ppm)、AR高浓度臭氧吸入暴露组(即AREH组,浓度2 ppm)。采用卵清蛋白(ovalbumin, OVA)抗原联合氢氧化铝佐剂致敏法制备AR大鼠模型。在AR造模的全程同步进行臭氧吸入暴露。将臭氧吸入暴露实验组置入臭氧吸入暴露系统,进行不同浓度的臭氧暴露,2 h/d,共6周。观察各实验组AR症状,记录大鼠鼻部喷嚏、挠鼻次数,并测量鼻分泌物量。末次暴露的24 h后,收集鼻腔灌洗液和鼻黏膜组织。免疫蛋白印迹法(Western blot)检测鼻黏膜NF-κB p65核蛋白表达。实时定量PCR(qRT-PCR)检测鼻黏膜NF-κB靶基因IL-6、IL-8和肿瘤坏死因子-α(TNF-α)的mRNA表达。ELISA检测血清OVA特异性IgE(OVA-sIgE)和鼻腔灌洗液中的促炎因子IL-6、IL-8和TNF-α的蛋白含量。大鼠鼻黏膜经苏木素-伊红(HE)染色,观察鼻黏膜病理学改变。采用SPSS 20.0软件进行数据分析。 结果 AR大鼠不同浓度臭氧暴露组的喷嚏数量、挠鼻次数及鼻分泌物的量较NC和AR组均明显增加(P<0.05)。AR臭氧各浓度暴露组血清OVA-slgE含量高于AR组及NC组(P<0.05),且AREH组升高最明显。AREM和AREH组鼻黏膜的NF-κB p65胞核内蛋白表达高于AR(P<0.05)。AR臭氧暴露组鼻黏膜IL-6、IL-8和TNF-α的mRNA表达升高,鼻腔灌洗液中TNF-α、IL-6和IL-8蛋白含量升高,AREM和AREH组高于AR组及NC组(P<0.05),AREH组升高最明显。 结论 臭氧吸入暴露可促进AR的OVA-sIgE水平增高,促进炎性因子TNF-α、IL-6和IL-8的释放,导致鼻黏膜病理损害和AR症状加重。这一病理过程可能与臭氧激活AR大鼠鼻黏膜转录因子NF-κB核蛋白入核及其靶基因表达的变化有关。
中图分类号:
[1] Guo ZQ, Dong WY, Xu J, et al. T-helper type 1-T-helper type 2 shift and nasal remodeling after fine particulate matter exposure in a rat model of allergic rhinitis[J]. Am J Rhinol Allergy, 2017, 31(3): 148-155. doi:10.2500/ajra.2017.31.4437. [2] Niu Y, Chen RJ, Xia YJ, et al. Personal ozone exposure and respiratory inflammatory response: the role of DNA methylation in the arginase-nitric oxide synthase pathway[J]. Environ Sci Technol, 2018, 52(15): 8785-8791. doi:10.1021/acs.est.8b01295. [3] Gerrity TR, Weaver RA, Berntsen J, et al. Extrathoracic and intrathoracic removal of O3 in tidal-breathing humans[J]. J Appl Physiol(1985), 1988, 65(1): 393-400. doi:10.1152/jappl.1988.65.1.393. [4] Hajat S, Haines A, Atkinson RW, et al. Association between air pollution and daily consultations with general practitioners for allergic rhinitis in London, United Kingdom[J]. Am J Epidemiol, 2001, 153(7): 704-714. doi:10.1093/aje/153.7.704. [5] Naclerio R, Ansotegui IJ, Bousquet J, et al. International expert consensus on the management of allergic rhinitis(AR)aggravated by air pollutants: impact of air pollution on patients with AR: current knowledge and future strategies[J]. World Allergy Organ J, 2020, 13(3): 100106. doi:10.1016/j.waojou.2020.100106. [6] 章如新, 江德胜, 李兆基, 等. P物质能神经阻滞剂治疗变应性鼻炎的实验研究[J]. 中华耳鼻咽喉科杂志, 1994, 29(5): 282-285. ZHANG Ruxin, JIANG Desheng, LI Zhaoji, et al. Experimental study on blocking agent of substance P nerves in the treatment of allergic rhinitis[J]. Chinese Journal of Otorhinolaryngology, 1994, 29(5): 282-285. [7] Sun N, Deng CR, Zhao QB, et al. Ursolic acid alleviates mucus secretion and tissue remodeling in rat model of allergic rhinitis after PM2.5 exposure[J]. Am J Rhinol Allergy, 2021, 35(2): 272-279. doi:10.1177/1945892420953351. [8] Wang H, Zhang RX, Wu J, et al. Knockdown of neurokinin-1 receptor expression by small interfering RNA prevents the development of allergic rhinitis in rats[J]. Inflamm Res, 2013, 62(10): 903-910. doi:10.1007/s00011-013-0649-5. [9] Suleimani MA, Ying D, Walker MJA. A comprehensive model of allergic rhinitis in Guinea pigs[J]. J Pharmacol Toxicol Methods, 2007, 55(2): 127-134. doi:10.1016/j.vascn.2006.05.005. [10] Kahle JJ, Neas LM, Devlin RB, et al. Interaction effects of temperature and ozone on lung function and markers of systemic inflammation, coagulation, and fibrinolysis: a crossover study of healthy young volunteers[J]. Environ Health Perspect, 2015, 123(4): 310-316. doi:10.1289/ehp.1307986. [11] D'Amato G, Holgate ST, Pawankar R, et al. Meteorological conditions, climate change, new emerging factors, and asthma and related allergic disorders. A statement of the World Allergy Organization[J]. World Allergy Organ J, 2015, 8(1): 25. doi:10.1186/s40413-015-0073-0. [12] Turner MC, Jerrett M, Pope CA 3rd, et al. Long-term ozone exposure and mortality in a large prospective study[J]. Am J Respir Crit Care Med, 2016, 193(10): 1134-1142. doi:10.1164/rccm.201508-1633OC. [13] Smith GJ, Walsh L, Higuchi M, et al. Development of a large-scale computer-controlled ozone inhalation exposure system for rodents[J]. Inhal Toxicol, 2019, 31(2): 61-72. doi:10.1080/08958378.2019.1597222. [14] Lee YL, Shaw CK, Su HJ, et al. Climate, traffic-related air pollutants and allergic rhinitis prevalence in middle-school children in Taiwan[J]. Eur Respir J, 2003, 21(6): 964-970. doi:10.1183/09031936.03.00094602. [15] Mösges R, Klimek L. Today's allergic rhinitis patients are different: new factors that may play a role[J]. Allergy, 2007, 62(9): 969-975. doi:10.1111/j.1398-9995.2007.01440.x. [16] Parker JD, Akinbami LJ, Woodruff TJ. Air pollution and childhood respiratory allergies in the United States[J]. Environ Health Perspect, 2009, 117(1): 140-147. doi:10.1289/ehp.11497. [17] Kim BJ, Kwon JW, Seo JH, et al. Association of ozone exposure with asthma, allergic rhinitis, and allergic sensitization[J]. Ann Allergy Asthma Immunol, 2011, 107(3): 214-219.e1. doi:10.1016/j.anai.2011.05.025. [18] Chen LC, Lippmann M. Inhalation toxicology methods: the generation and characterization of exposure atmospheres and inhalational exposures[J]. Curr Protoc Toxicol, 2015, 2(63): 24.4.1-24.4.23. doi:10.1002/0471140856.tx2404s63. [19] Adams WC. Comparison of chamber and face-mask 6.6-hour exposures to ozone on pulmonary function and symptoms responses[J]. Inhal Toxicol, 2002, 14(7): 745-764. doi:10.1080/08958370290084610. [20] Hatch GE, Duncan KE, Diaz-Sanchez D, et al. Progress in assessing air pollutant risks from in vitro exposures: matching ozone dose and effect in human airway cells[J]. Toxicol Sci, 2014, 141(1): 198-205. doi:10.1093/toxsci/kfu115. [21] Terao. Cholesterol hydroperoxides and their degradation mechanism[J]. Subcell Biochem, 2014, 77: 83-91. doi:10.1007/978-94-007-7920-4_7. [22] Barnes PJ, Adcock IM. NF-kappa B: a pivotal role in asthma and a new target for therapy[J]. Trends Pharmacol Sci, 1997, 18(2): 46-50. doi:10.1016/s0165-6147(97)89796-9. [23] Wu WD, Doreswamy V, Diaz-Sanchez D, et al. GSTM1 modulation of IL-8 expression in human bronchial epithelial cells exposed to ozone[J]. Free Radic Biol Med, 2011, 51(2): 522-529. doi:10.1016/j.freeradbiomed.2011.05.006. [24] Nichols BG, Woods JS, Luchtel DL, et al. Effects of ozone exposure on nuclear factor-kappaB activation and tumor necrosis factor-alpha expression in human nasal epithelial cells[J]. Toxicol Sci, 2001, 60(2): 356-362. doi:10.1093/toxsci/60.2.356. [25] Wee JH, Zhang YL, Rhee CS, et al. Inhibition of allergic response by intranasal selective NF-κB decoy oligodeoxynucleotides in a murine model of allergic rhinitis[J]. Allergy Asthma Immunol Res, 2017, 9(1): 61-69. doi:10.4168/aair.2017.9.1.61. [26] Lee HJ, Kim B, Im NR, et al. Decreased expression of E-cadherin and ZO-1 in the nasal mucosa of patients with allergic rhinitis: altered regulation of E-cadherin by IL-4, IL-5, and TNF-alpha[J]. Am J Rhinol Allergy, 2016, 30(3): 173-178. doi:10.2500/ajra.2016.30.4295. [27] 张罗, 韩德民, 王琪. 鼻腔黏液纤毛传输系统的组成和纤毛运动状况评估[J]. 中国医学文摘(耳鼻咽喉科学), 2006, 21(3): 141-143. doi:10.19617/j.issn1001-1307.2006.03.006. |
[1] | 张雅琪,刘慧敏,曹淋曼,王子钰,林旭,李燕萍,薛刚,吴靖芳. MAPK、PI3K-AKT、NF-κB在小鼠过敏性鼻炎中的表达及意义[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 254-259. |
[2] | 郑雅霓, 刘鹤, 马亮, 张明生, 孙中武. 布地奈德联合生理盐水鼻腔冲洗对慢性鼻-鼻窦炎的疗效及对鼻腔分泌物IL-6、IL-8、TNF-α的影响[J]. 山东大学耳鼻喉眼学报, 2018, 32(3): 58-62. |
[3] | 李云秋,冯 永,王继华 . 鼻息肉中核因子κB亚单位P50活性与IL-4、γ-IFN因子表达的关系[J]. 山东大学耳鼻喉眼学报, 2008, 22(1): 48-51 . |
|