山东大学耳鼻喉眼学报 ›› 2025, Vol. 39 ›› Issue (1): 146-151.doi: 10.6040/j.issn.1673-3770.0.2023.165
• 综述 • 上一篇
许莞菁1,孙雨浩2,赵军3
XU Wanjing1, SUN Yuhao2, ZHAO Jun3
摘要: 视网膜退行性疾病的病因和发病机制十分复杂,其中氧化应激因素造成的损伤不容忽视。姜黄素是具有多种生物活性的一种天然化合物,由于分子结构特殊,姜黄素可以清除活性氧并激活抗氧化防御系统,并且由于亲脂性强,姜黄素可以通过血-视网膜屏障作用于视网膜,故其对视网膜退行性疾病的治疗具备极高的研究价值。本文主要就姜黄素的抗氧化特性在几种视网膜退行性疾病中的应用以及相关研究进展作一综述。
中图分类号:
[1] Kaur G, Singh NK. The role of inflammation in retinal neurodegeneration and degenerative diseases[J]. Int J Mol Sci, 2021, 23(1): 386. doi:10.3390/ijms23010386 [2] Lin JB, Apte RS. NAD+ and sirtuins in retinal degenerative diseases: a look at future therapies[J]. Prog Retin Eye Res, 2018, 67: 118-129. doi:10.1016/j.preteyeres.2018.06.002 [3] 赵雅,马严,姚牧笛,等. 表观遗传修饰对视网膜神经退行性疾病的调控作用研究进展[J]. 眼科新进展, 2022, 42(7): 551-556. doi:10.13389/j.cnki.rao.2022.0113 ZHAO Ya, MA Yan, YAO Mudi, et al. Advances in epigenetic modification and its regulation in retinal neurodegenerative diseases[J]. Recent Advances in Ophthalmology, 2022, 42(7): 551-556. doi:10.13389/j.cnki.rao.2022.0113 [4] Hsueh YJ, Chen YN, Tsao YT, et al. The pathomechanism, antioxidant biomarkers, and treatment of oxidative stress-related eye diseases[J]. Int J Mol Sci, 2022, 23(3): 1255. doi:10.3390/ijms23031255 [5] Zhang SM, Fan B, Li YL, et al. Oxidative stress-involved mitophagy of retinal pigment epithelium and retinal degenerative diseases[J]. Cell Mol Neurobiol, 2023, 43(7): 3265-3276. doi:10.1007/s10571-023-01383-z [6] Saccà SC, Roszkowska AM, Izzotti A. Environmental light and endogenous antioxidants as the main determinants of non-cancer ocular diseases[J]. Mutat Res, 2013, 752(2): 153-171. doi:10.1016/j.mrrev.2013.01.001 [7] 席玉婕.基于整合策略的和血明目片干预视网膜退行性疾病的主效应环节及临床定位研究[D].天津:天津中医药大学,2022.doi:10.27368/d.cnki.gtzyy.2022.000318 [8] Anand P, Kunnumakkara AB, Newman RA, et al. Bioavailability of curcumin: problems and promises[J]. Mol Pharm, 2007, 4(6): 807-818. doi:10.1021/mp700113r [9] Farzaei MH, Zobeiri M, Parvizi F, et al. Curcumin in liver diseases: a systematic review of the cellular mechanisms of oxidative stress and clinical perspective[J]. Nutrients, 2018, 10(7): 855. doi:10.3390/nu10070855 [10] Sies H. Oxidative stress: a concept in redox biology and medicine[J]. Redox Biol, 2015, 4: 180-183. doi:10.1016/j.redox.2015.01.002 [11] Solleiro-Villavicencio H, Rivas-Arancibia S. Effect of chronic oxidative stress on neuroinflammatory response mediated by CD4+T cells in neurodegenerative diseases[J]. Front Cell Neurosci, 2018, 12: 114. doi:10.3389/fncel.2018.00114 [12] Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing[J]. Nature, 2000, 408(6809): 239-247. doi:10.1038/35041687 [13] Saccà SC, Cutolo CA, Ferrari D, et al. The eye, oxidative damage and polyunsaturated fatty acids[J]. Nutrients, 2018, 10(6): 668. doi:10.3390/nu10060668 [14] Ikehata H, Ono T. The mechanisms of UV mutagenesis[J]. J Radiat Res, 2011, 52(2): 115-125. doi:10.1269/jrr.10175 [15] Feldheim DA, O'Leary DDM. Visual map development: bidirectional signaling, bifunctional guidance molecules, and competition[J]. Cold Spring Harb Perspect Biol, 2010, 2(11): a001768. doi:10.1101/cshperspect.a001768 [16] Su LJ, Zhang JH, Gomez H, et al. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis[J]. Oxid Med Cell Longev, 2019, 2019: 5080843. doi:10.1155/2019/5080843 [17] Chandrasekaran PR, Madanagopalan VG. Role of curcumin in retinal diseases-a review[J]. Graefes Arch Clin Exp Ophthalmol, 2022, 260(5): 1457-1473. doi:10.1007/s00417-021-05542-0 [18] Rodríguez ML, Pérez S, Mena-Mollá S, et al. Oxidative stress and microvascular alterations in diabetic retinopathy: future therapies[J]. Oxid Med Cell Longev, 2019, 2019: 4940825. doi:10.1155/2019/4940825 [19] Kang QZ, Yang CX. Oxidative stress and diabetic retinopathy: molecular mechanisms, pathogenetic role and therapeutic implications[J]. Redox Biol, 2020, 37: 101799. doi:10.1016/j.redox.2020.101799 [20] Davis MD, Gangnon RE, Lee LY, et al. The Age-Related Eye Disease Study severity scale for age-related macular degeneration: AREDS Report No. 17[J]. Arch Ophthalmol, 2005, 123(11): 1484-1498. doi:10.1001/archopht.123.11.1484 [21] Handa JT. How does the macula protect itself from oxidative stress?[J]. Mol Aspects Med, 2012, 33(4): 418-435. doi:10.1016/j.mam.2012.03.006 [22] Moreno ML, Mérida S, Bosch-Morell F, et al. Autophagy dysfunction and oxidative stress, two related mechanisms implicated in retinitis pigmentosa[J]. Front Physiol, 2018, 9: 1008. doi:10.3389/fphys.2018.01008 [23] Murakami Y, Nakabeppu Y, Sonoda KH. Oxidative stress and microglial response in retinitis pigmentosa[J]. Int J Mol Sci, 2020, 21(19): 7170. doi:10.3390/ijms21197170 [24] Gallenga CE, Lonardi M, Pacetti S, et al. Molecular mechanisms related to oxidative stress in retinitis pigmentosa[J]. Antioxidants, 2021, 10(6): 848. doi:10.3390/antiox10060848 [25] Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: a review[J]. JAMA, 2014, 311(18): 1901-1911. doi:10.1001/jama.2014.3192 [26] Fan Gaskin JC, Shah MH, Chan EC. Oxidative stress and the role of NADPH oxidase in glaucoma[J]. Antioxidants, 2021, 10(2): 238. doi:10.3390/antiox10020238 [27] Cheng YH, Ko YC, Chang YF, et al. Thermosensitive chitosan-gelatin-based hydrogel containing curcumin-loaded nanoparticles and latanoprost as a dual-drug delivery system for glaucoma treatment[J]. Exp Eye Res, 2019, 179: 179-187. doi:10.1016/j.exer.2018.11.017 [28] Izzotti A, Saccà SC, Cartiglia C, et al. Oxidative deoxyribonucleic acid damage in the eyes of glaucoma patients[J]. Am J Med, 2003, 114(8): 638-646. doi:10.1016/S0002-9343(03)00114-1 [29] Adornetto A, Rombolà L, Morrone LA, et al. Natural products: evidence for neuroprotection to be exploited in glaucoma[J]. Nutrients, 2020, 12(10): 3158. doi:10.3390/nu12103158 [30] Rahban M, Habibi-Rezaei M, Mazaheri M, et al. Anti-viral potential and modulation of Nrf2 by curcumin: pharmacological implications[J]. Antioxidants, 2020, 9(12): 1228. doi:10.3390/antiox9121228 [31] Yu C, Xiao JH. The Keap1-Nrf2 system: a mediator between oxidative stress and aging[J]. Oxid Med Cell Longev, 2021, 2021: 6635460. doi:10.1155/2021/6635460 [32] Kunnumakkara AB, Bordoloi D, Padmavathi G, et al. Curcumin, the golden nutraceutical: multitargeting for multiple chronic diseases[J]. Br J Pharmacol, 2017, 174(11): 1325-1348. doi:10.1111/bph.13621 [33] Aggarwal BB, Gupta SC, Sung B. Curcumin: an orally bioavailable blocker of TNF and other pro-inflammatory biomarkers[J]. Br J Pharmacol, 2013, 169(8): 1672-1692. doi:10.1111/bph.12131 [34] 陈美霓,郭巍,郝琴,等. 姜黄素的药理作用、临床应用及机制研究进展[J]. 延安大学学报(医学科学版), 2021, 19(3): 96-99. doi:10.19893/j.cnki.ydyxb.2020-0166 CHEN Meini, GUO Wei, HAO Qin, et al. Research progress on pharmacological action, clinical application and mechanism of curcumin[J]. Journal of Yan'an University(Medical Science Edition), 2021, 19(3): 96-99. doi:10.19893/j.cnki.ydyxb.2020-0166 [35] Ak T, Gülçin I. Antioxidant and radical scavenging properties of curcumin[J]. Chem Biol Interact, 2008, 174(1): 27-37. doi:10.1016/j.cbi.2008.05.003 [36] Qu Z, Sun JC, Zhang WN, et al. Transcription factor NRF2 as a promising therapeutic target for Alzheimer's disease[J]. Free Radic Biol Med, 2020, 159: 87-102. doi:10.1016/j.freeradbiomed.2020.06.028 [37] Tsai YM, Chien, Lin LC, et al. Curcumin and its nano-formulation: the kinetics of tissue distribution and blood-brain barrier penetration[J]. Int J Pharm, 2011, 416(1): 331-338. doi:10.1016/j.ijpharm.2011.06.030 [38] Emoto Y, Yoshizawa K, Uehara N, et al. Curcumin suppresses N-methyl-N-nitrosourea-induced photoreceptor apoptosis in Sprague-Dawley rats[J]. In Vivo, 2013, 27(5): 583-590.[PubMed] [39] Vasireddy V, Chavali VR, Joseph VT, et al. Rescue of photoreceptor degeneration by curcumin in transgenic rats with P23H rhodopsin mutation[J]. PLoS One, 2011, 6(6): e21193. doi:10.1371/journal.pone.0021193 [40] Maugeri A, Mazzone MG, Giuliano F, et al. Curcumin modulates DNA methyltransferase functions in a cellular model of diabetic retinopathy[J]. Oxid Med Cell Longev, 2018, 2018: 5407482. doi:10.1155/2018/5407482 [41] Zuo ZF, Zhang Q, Liu XZ. Protective effects of curcumin on retinal Müller cell in early diabetic rats[J]. Int J Ophthalmol, 2013, 6(4): 422-424. doi:10.3980/j.issn.2222-3959.2013.04.02 [42] Yang F, Yu JQ, Ke F, et al. Curcumin alleviates diabetic retinopathy in experimental diabetic rats[J]. Ophthalmic Res, 2018, 60(1): 43-54. doi:10.1159/000486574 [43] Woo JM, Shin DY, Lee SJ, et al. Curcumin protects retinal pigment epithelial cells against oxidative stress via induction of heme oxygenase-1 expression and reduction of reactive oxygen[J]. Mol Vis, 2012, 18: 901-908 [44] Chang YC, Chang WC, Hung KH, et al. The generation of induced pluripotent stem cells for macular degeneration as a drug screening platform: identification of curcumin as a protective agent for retinal pigment epithelial cells against oxidative stress[J]. Front Aging Neurosci, 2014, 6: 191. doi:10.3389/fnagi.2014.00191 [45] Mandal MN, Patlolla JM, Zheng LX, et al. Curcumin protects retinal cells from light-and oxidant stress-induced cell death[J]. Free Radic Biol Med, 2009, 46(5): 672-679. doi:10.1016/j.freeradbiomed.2008.12.006 [46] Lin CB, Wu XM. Curcumin protects trabecular meshwork cells from oxidative stress[J]. Invest Ophthalmol Vis Sci, 2016, 57(10): 4327-4332. doi:10.1167/iovs.16-19883 [47] Yue YK, Mo B, Zhao J, et al. Neuroprotective effect of curcumin against oxidative damage in BV-2 microglia and high intraocular pressure animal model[J]. J Ocul Pharmacol Ther, 2014, 30(8): 657-664. doi:10.1089/jop.2014.0022 |
[1] | 付奕豪,徐逸轩,严宏,张婕. 谷氧还蛋白在眼病中的作用研究进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(3): 125-130. |
[2] | 张转,刘涛,白治丽,周长明. 氧化应激与噪音性聋发病机制及治疗进展[J]. 山东大学耳鼻喉眼学报, 2017, 31(5): 101-103. |
[3] | 周华群,张立庆,徐朝琪,姜盼,王愿,刘晓静,董伟达. 姜黄素联合白藜芦醇抑制人头颈部肿瘤细胞系增殖的机制研究[J]. 山东大学耳鼻喉眼学报, 2017, 31(2): 67-72. |
[4] | 李兰根, 伟伟, 张玉凤, 格日乐图, 杨佳, 张艳梅. SIRT1抗视网膜色素上皮细胞氧化应激作用的实验研究[J]. 山东大学耳鼻喉眼学报, 2015, 29(6): 56-59. |
|