山东大学耳鼻喉眼学报 ›› 2025, Vol. 39 ›› Issue (2): 152-157.doi: 10.6040/j.issn.1673-3770.0.2023.295
• 综述 • 上一篇
吴敏1,2,李正阳1,2,孟杰2,3,叶惠平1,2
WU Min1,2, LI Zhengyang1,2, MENG Jie2,3, YE Huiping1,2
摘要: 大约有3/4的鼻咽癌(nasopharyngeal carcinoma, NPC)患者确诊时已处于中晚期。放射及化学疗法是当前NPC的主要疗法,但部分患者的治疗效果并不理想,NPC的分子机制尚不明确。程序性细胞死亡是由一细胞多种主动有序的死亡方式,在生命活动的平衡中发挥着至关重要的作用。近来的研究发现了程序性细胞死亡与NPC相关,铜死亡、铁死亡、焦亡、自噬、坏死性凋亡、细胞凋亡等多种程序性细胞死亡方式在NPC的不同时期发挥着重要作用。本文将概述细胞的铜死亡、铁死亡、焦亡、自噬、坏死性凋亡和细胞凋亡的分子机制和其在NPC发展中的作用,为探索NPC的发病机制和潜在的治疗靶点提供新的视角。
中图分类号:
[1] Chen YP, Chan ATC, Le QT, et al. Nasopharyngeal carcinoma[J]. Lancet, 2019, 394(10192): 64-80. doi:10.1016/S0140-6736(19)30956-0 [2] Yong SK, Ha TC, Yeo MCR, et al. Associations of lifestyle and diet with the risk of nasopharyngeal carcinoma in Singapore: a case-control study[J]. Chin J Cancer, 2017, 36(1): 3. doi:10.1186/s40880-016-0174-3 [3] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. doi:10.3322/caac.21492 [4] Zhang Y, Chen L, Hu GQ, et al. Gemcitabine and cisplatin induction chemotherapy in nasopharyngeal carcinoma[J]. N Engl J Med, 2019, 381(12): 1124-1135. doi:10.1056/NEJMoa1905287 [5] Wong KCW, Hui EP, Lo KW, et al. Nasopharyngeal carcinoma: an evolving paradigm[J]. Nat Rev Clin Oncol, 2021, 18(11): 679-695. doi:10.1038/s41571-021-00524-x [6] Li YJ, Ou XM, Shen CY, et al. Patterns of local failures and suggestions for reduction of clinical target volume for nasopharyngeal carcinoma patients without cervical lymph node metastasis[J]. OncoTargets Ther, 2018, 11: 2545-2555. doi:10.2147/ott.s158126 [7] Moujalled D, Strasser A, Liddell JR. Molecular mechanisms of cell death in neurological diseases[J]. Cell Death Differ, 2021, 28(7): 2029-2044. doi:10.1038/s41418-021-00814-y [8] Xu JY, Wei XL, Ren C, et al. Association of plasma epstein-barr virus DNA with outcomes for patients with recurrent or metastatic nasopharyngeal carcinoma receiving anti-programmed cell death 1 immunotherapy[J]. JAMA Netw Open, 2022, 5(3): e220587. doi:10.1001/jamanetworkopen.2022.0587 [9] Yan XW, Wang N, Dong JW, et al. A cuproptosis-related lncRNAs signature for prognosis, chemotherapy, and immune checkpoint blockade therapy of low-grade glioma[J]. Front Mol Biosci, 2022, 9: 966843. doi:10.3389/fmolb.2022.966843 [10] 朱洁洁, 王华. 铜诱导调节性细胞死亡的作用机制与抗肿瘤治疗的研究进展[J]. 江苏大学学报(医学版), 2022, 32(4): 326-331. doi:10.13312/j.issn.1671-7783.y220122 [11] 孙颖, 张斌. 金属配合物作为蛋白酶体抑制剂的研究进展[J]. 化学通报, 2009, 72(6): 495-500. doi:10.14159/j.cnki.0441-3776.2009.06.004 SUN Ying, ZHANG Bin. Progress on organic-metal complexes as proteasome inhibitor[J]. Chemistry, 2009, 72(6): 495-500. doi:10.14159/j.cnki.0441-3776.2009.06.004 [12] Zhou ZJ, Zheng KF, Zhou S, et al. E3 ubiquitin ligases in nasopharyngeal carcinoma and implications for therapies[J]. J Mol Med, 2023, 101(12): 1543-1565. doi:10.1007/s00109-023-02376-7 [13] Li YQ, Chen FF, Chen J, et al. Disulfiram/copper induces antitumor activity against both nasopharyngeal cancer cells and cancer-associated fibroblasts through ROS/MAPK and ferroptosis pathways[J]. Cancers, 2020, 12(1): 138. doi:10.3390/cancers12010138 [14] Kim YJ, Kim JY, Lee N, et al. Disulfiram suppresses cancer stem-like properties and STAT3 signaling in triple-negative breast cancer cells[J]. Biochem Biophys Res Commun, 2017, 486(4): 1069-1076. doi:10.1016/j.bbrc.2017.03.164 [15] Li H, Wang J, Wu C, et al. The combination of disulfiram and copper for cancer treatment[J]. Drug Discov Today, 2020, 25(6): 1099-1108. doi: 10.1016/j.drudis.2020.04.003 [16] Wakisaka N, Wen QH, Yoshizaki T, et al. Association of vascular endothelial growth factor expression with angiogenesis and lymph node metastasis in nasopharyngeal carcinoma[J]. Laryngoscope, 1999, 109(5): 810-814. doi:10.1097/00005537-199905000-00024 [17] 梁勇军, 蒋虹, 金光裕. 贝伐珠单抗疗法在局部晚期及转移性鼻咽癌中的应用[J]. 中国肿瘤临床与康复, 2019, 26(7): 804-807. doi:10.13455/j.cnki.cjcor.2019.07.10 [18] da Silva DA, De Luca A, Squitti R, et al. Copper in tumors and the use of copper-based compounds in cancer treatment[J]. J Inorg Biochem, 2022, 226: 111634. doi:10.1016/j.jinorgbio.2021.111634 [19] Jiang XJ, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease[J]. Nat Rev Mol Cell Biol, 2021, 22(4): 266-282. doi:10.1038/s41580-020-00324-8 [20] Liang JY, Wang DS, Lin HC, et al. A novel ferroptosis-related gene signature for overall survival prediction in patients with hepatocellular carcinoma[J]. Int J Biol Sci, 2020, 16(13): 2430-2441. doi:10.7150/ijbs.45050 [21] Yang WS, Stockwell BR. Ferroptosis: death by lipid peroxidation[J]. Trends Cell Biol, 2016, 26(3): 165-176. doi:10.1016/j.tcb.2015.10.014 [22] Fearnhead HO, Vandenabeele P, Vanden Berghe T. How do we fit ferroptosis in the family of regulated cell death?[J]. Cell Death Differ, 2017, 24(12): 1991-1998. doi:10.1038/cdd.2017.149 [23] Gong CD, Ji QK, Wu MJ, et al. Ferroptosis in tumor immunity and therapy[J]. J Cell Mol Med, 2022, 26(22): 5565-5579. doi:10.1111/jcmm.17529 [24] Angeli JPF, Schneider M, Proneth B, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice[J]. Nat Cell Biol, 2014, 16(12): 1180-1191. doi:10.1038/ncb3064 [25] Koppula P, Zhuang L, Gan BY. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy[J]. Protein Cell, 2021, 12(8): 599-620. doi:10.1007/s13238-020-00789-5 [26] Shi M, Du JN, Shi JJ, et al. Ferroptosis-related gene ATG5 is a novel prognostic biomarker in nasopharyngeal carcinoma and head and neck squamous cell carcinoma[J]. Front Bioeng Biotechnol, 2022, 10: 1006535. doi:10.3389/fbioe.2022.1006535 [27] Qiu L, Zhou R, Zhou L, et al. CAPRIN2 upregulation by LINC00941 promotes nasopharyngeal carcinoma ferroptosis resistance and metastatic colonization through HMGCR[J]. Front Oncol, 2022, 12: 931749. doi:10.3389/fonc.2022.931749 [28] Gaggelli E, Kozlowski H, Valensin D, et al. Copper homeostasis and neurodegenerative disorders(Alzheimer's, prion, and Parkinson's diseases and amyotrophic lateral sclerosis)[J]. Chem Rev, 2006, 106(6): 1995-2044. doi:10.1021/cr040410w [29] Li YQ, Chen FF, Chen J, et al. Disulfiram/copper induces antitumor activity against both nasopharyngeal cancer cells and cancer-associated fibroblasts through ROS/MAPK and ferroptosis pathways[J]. Cancers, 2020, 12(1): 138. doi:10.3390/cancers12010138 [30] Hung CM, Chang CC, Lin CW, et al. GADD45γ induces G2/M arrest in human pharynx and nasopharyngeal carcinoma cells by cucurbitacin E[J]. Sci Rep, 2014, 4: 6454. doi:10.1038/srep06454 [31] Xu Y, Wang Q, Li XZ, et al. Itraconazole attenuates the stemness of nasopharyngeal carcinoma cells via triggering ferroptosis[J]. Environ Toxicol, 2021, 36(2): 257-266. doi:10.1002/tox.23031 [32] Yu P, Zhang X, Liu N, et al. Pyroptosis: mechanisms and diseases[J]. Signal Transduct Target Ther, 2021, 6(1): 128. doi:10.1038/s41392-021-00507-5 [33] Hsu SK, Li CY, Lin IL, et al. Inflammation-related pyroptosis, a novel programmed cell death pathway, and its crosstalk with immune therapy in cancer treatment[J]. Theranostics, 2021, 11(18): 8813-8835. doi:10.7150/thno.62521 [34] Chung IC, Chen LC, Tsang NM, et al. Mitochondrial oxidative phosphorylation complex regulates NLRP3 inflammasome activation and predicts patient survival in nasopharyngeal carcinoma[J]. Mol Cell Proteom, 2020, 19(1): 142-154. doi:10.1074/mcp.RA119.001808 [35] Looi CK, Hii LW, Chung FFL, et al. Roles of inflammasomes in epstein-barr virus-associated nasopharyngeal cancer[J]. Cancers, 2021, 13(8): 1786. doi:10.3390/cancers13081786 [36] Di MP, Miao JJ, Pan QZ, et al. OTUD4-mediated GSDME deubiquitination enhances radiosensitivity in nasopharyngeal carcinoma by inducing pyroptosis[J]. J Exp Clin Cancer Res, 2022, 41(1): 328. doi:10.1186/s13046-022-02533-9 [37] Li Q, Wang M, Zhang Y, et al. BIX-01294-enhanced chemosensitivity in nasopharyngeal carcinoma depends on autophagy-induced pyroptosis[J]. Acta Biochim Biophys Sin, 2020, 52(10): 1131-1139. doi:10.1093/abbs/gmaa097 [38] Wu CW, Wang SG, Lin ML, et al. Downregulation of miR-144 by triptolide enhanced p85α?PTEN complex formation causing S phase arrest of human nasopharyngeal carcinoma cells[J]. Eur J Pharmacol, 2019, 855: 137-148. doi:10.1016/j.ejphar.2019.04.052 [39] Zheng RN, Chen KX, Zhang Y, et al. Apogossypolone induces apoptosis and autophagy in nasopharyngeal carcinoma cells in an in vitro and in vivo study[J]. Oncol Lett, 2017, 14(1): 751-757. doi:10.3892/ol.2017.6176 [40] Glick D, Barth S, MacLeod KF. Autophagy: cellular and molecular mechanisms[J]. J Pathol, 2010, 221(1): 3-12. doi:10.1002/path.2697 [41] Zhu QW, Zhang QC, Gu M, et al. MIR106A-5p upregulation suppresses autophagy and accelerates malignant phenotype in nasopharyngeal carcinoma[J]. Autophagy, 2021, 17(7): 1667-1683. doi:10.1080/15548627.2020.1781368 [42] You B, Xia T, Gu M, et al. AMPK-mTOR-Mediated Activation of Autophagy Promotes Formation of Dormant Polyploid Giant Cancer Cells[J]. Cancer Res, 2022, 82(5): 846-858. doi: 10.1158/0008-5472.CAN-21-2342 [43] 郑传胜, 白薇琦, 俞吉霞, 等. MiR-29调控自噬在鼻咽癌中的研究进展[J]. 现代实用医学, 2022, 34(10): 1388-1390. doi:10.3969/j.issn.1671-0800.2022.10.056 [44] Wang J, Liu GX, Li XJ, et al. Curcumol simultaneously induces both apoptosis and autophagy in human nasopharyngeal carcinoma cells[J]. Phytother Res, 2021, 35(12): 7004-7017. doi:10.1002/ptr.7321 [45] Lin YT, Wang HC, Hsu YC, et al. Capsaicin induces autophagy and apoptosis in human nasopharyngeal carcinoma cells by downregulating the PI3K/AKT/mTOR pathway[J]. Int J Mol Sci, 2017, 18(7): 1343. doi:10.3390/ijms18071343 [46] Degterev A, Hitomi J, Germscheid M, et al. Identification of RIP1 kinase as a specific cellular target of necrostatins[J]. Nat Chem Biol, 2008, 4(5): 313-321. doi:10.1038/nchembio.83 [47] Varfolomeev E, Vucic D. Intracellular regulation of TNF activity in health and disease[J]. Cytokine, 2018, 101: 26-32. doi:10.1016/j.cyto.2016.08.035 [48] Su Z, Yang Z, Xu Y, et al. Apoptosis, autophagy, necroptosis, and cancer metastasis[J]. Mol Cancer, 2015, 14:48. doi: 10.1186/s12943-015-0321-5 [49] Rao Z, Zhu Y, Yang P, et al. Pyroptosis in inflammatory diseases and cancer[J]. Theranostics, 2022, 12(9): 4310-4329. doi: 10.7150/thno.71086 [50] Siegmund D, Wagner J, Wajant H. TNF receptor associated factor 2(TRAF2)signaling in cancer[J]. Cancers, 2022, 14(16): 4055. doi:10.3390/cancers14164055 [51] Bao CH, Sun Y, Dwarakanath B, et al. Carbon ion triggered immunogenic necroptosis of nasopharyngeal carcinoma cells involving necroptotic inhibitor BCL-X[J]. J Cancer, 2021, 12(5): 1520-1530. doi:10.7150/jca.46316 [52] Deng Q, Yu X, Xiao L, et al. Neoalbaconol induces energy depletion and multiple cell death in cancer cells by targeting PDK1-PI3-K/Akt signaling pathway[J]. Cell Death Dis, 2013, 4(9): e804. doi: 10.1038/cddis.2013.324 [53] Liu TC, Sun X, Cao ZW. Shikonin-induced necroptosis in nasopharyngeal carcinoma cells via ROS overproduction and upregulation of RIPK1/RIPK3/MLKL expression[J]. Onco Targets Ther, 2019, 12: 2605-2614. doi:10.2147/OTT.S200740 [54] Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics[J]. Br J Cancer, 1972, 26(4): 239-257. doi:10.1038/bjc.1972.33 [55] Fleisher TA. Apoptosis[J]. Ann Allergy Asthma Immunol, 1997, 78(3): 245-249. doi:10.1016/S1081-1206(10)63176-6 [56] Kashyap D, Garg VK, Goel N. Intrinsic and extrinsic pathways of apoptosis: role in cancer development and prognosis[J]. Adv Protein Chem Struct Biol, 2021, 125: 73-120. doi:10.1016/bs.apcsb.2021.01.003 [57] Tang M, Dong X, Xiao LB, et al. CPT1A-mediated fatty acid oxidation promotes cell proliferation via nucleoside metabolism in nasopharyngeal carcinoma[J]. Cell Death Dis, 2022, 13(4): 331. doi:10.1038/s41419-022-04730-y [58] Qi CL, Huang ML, Zou Y, et al. The IRF2/CENP-N/AKT signaling axis promotes proliferation, cell cycling and apoptosis resistance in nasopharyngeal carcinoma cells by increasing aerobic glycolysis[J]. J Exp Clin Cancer Res, 2021, 40(1): 390. doi:10.1186/s13046-021-02191-3 [59] Liang YS, Feng GF, Wu L, et al. Caffeic acid phenethyl ester suppressed growth and metastasis of nasopharyngeal carcinoma cells by inactivating the NF-κB pathway[J]. Drug Des Dev Ther, 2019, 13: 1335-1345. doi:10.2147/dDDT.s199182 [60] Wang TT, Chen ZZ, Xie P, et al. Isoliquiritigenin suppresses the proliferation and induced apoptosis via miR-32/LATS2/Wnt in nasopharyngeal carcinoma[J]. Eur J Pharmacol, 2019, 856: 172352. doi: 10.1016/j.ejphar.2019.04.033 |
[1] | 张茂华,魏日富,朱忠寿,刘平,高尚,李慧凤. LncRNA PCAT-1对鼻咽癌细胞生物学行为及化疗敏感性的影响[J]. 山东大学耳鼻喉眼学报, 2025, 39(1): 68-76. |
[2] | 杨煜雲,黄艳利,李军政. 铜配合物在抗肿瘤治疗中的研究进展[J]. 山东大学耳鼻喉眼学报, 2024, 38(5): 145-152. |
[3] | 张静祎,董湘依,牟亚魁,宋西成. 细胞焦亡在耳鼻咽喉科疾病中的研究进展[J]. 山东大学耳鼻喉眼学报, 2024, 38(4): 140-148. |
[4] | 杨开炎, 唐凤珠, 覃启才, 李旭祥, 冯大益, 农丰靖, 杨秋云. 异常纺锤体样小头畸形相关蛋白在鼻咽癌中的表达及其临床意义[J]. 山东大学耳鼻喉眼学报, 2024, 38(3): 18-25. |
[5] | 代红磊,王秋阳,马文学,官兵,齐静静. 基于Joinpoint回归及年龄-时期-队列模型分析鼻咽癌患者的死亡率发展趋势[J]. 山东大学耳鼻喉眼学报, 2024, 38(1): 27-31. |
[6] | 朱晗,刘雪霞,张华. 自噬在变应性鼻炎发病的作用机制研究[J]. 山东大学耳鼻喉眼学报, 2024, 38(1): 79-86. |
[7] | 孙汐文,骆春雨,李志鹏,张维天. 铁死亡在呼吸道炎症性疾病中的作用及研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(6): 24-32. |
[8] | 付艺璇,王涛,曹静,李光达,郑凌方,许莞菁,赵爽. 羟基红花黄色素A对大鼠视网膜光损伤的保护作用[J]. 山东大学耳鼻喉眼学报, 2023, 37(5): 128-134. |
[9] | 涂巧铃,李玉凤,彭军. 鼻咽癌中抗PD-L1/PD-1治疗及非编码RNA调控研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(5): 135-141. |
[10] | 黄艳利,李军政. 铜诱导肿瘤细胞死亡机制及其在肿瘤治疗中的研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(5): 198-205. |
[11] | 杨英玲,苟浩铖,冯俊. 细胞焦亡的分子机制及其在头颈部鳞状细胞癌中的研究现状[J]. 山东大学耳鼻喉眼学报, 2023, 37(4): 160-165. |
[12] | 袁玥,付圣尧,姜彦,陈敏. 细胞焦亡在慢性气道炎症性疾病中的研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(4): 166-171. |
[13] | 周加敏,宋玉婉,孙岩. 细胞焦亡在老年退行性疾病中的研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(4): 172-180. |
[14] | 索安奇,杨欣欣. 线粒体自噬与头颈部鳞状细胞癌关系的研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(3): 111-117. |
[15] | 刘佳钰,樊慧明,邹游,陈始明. 人工智能在鼻咽癌诊断与治疗中的应用研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(2): 135-142. |
|