山东大学耳鼻喉眼学报 ›› 2024, Vol. 38 ›› Issue (2): 34-40.doi: 10.6040/j.issn.1673-3770.0.2023.376

• 论著 • 上一篇    下一篇

糖化血红蛋白变异指数与糖尿病视网膜病变严重程度的相关性研究

何静,雷春燕,张美霞   

  1. 四川大学华西医院 眼科, 四川 成都 610041
  • 出版日期:2024-03-20 发布日期:2024-03-29
  • 通讯作者: 张美霞. E-mail:meixiazhang@foxmail.com

Association of glycosylated hemoglobin variation index with diabetic retinopathy severity

HE Jing, LEI Chunyan, ZHANG Meixia   

  1. Department of Ophthalmology, West China School of Medicine, West China Hospital of Sichuan University, Chengdu 610041, Sichuan,  China
  • Online:2024-03-20 Published:2024-03-29

摘要: 目的 探讨糖化血红蛋白变异指数(hemoglobin glycation index, HGI)与2型糖尿病(type 2 diabetes mellitus, T2DM)视网膜病变、黄斑水肿严重程度的相关性。 方法 收集T2DM患者294例纳入研究,根据国际眼科学会(2022年)糖尿病视网膜病变诊断标准分为增殖期糖尿病视网膜病变组(proliferative diabetic retinopathy, PDR)、非增殖期糖尿病视网膜病变组(non-proliferative diabetic retinopathy, NPDR)、无微血管病变组(no microangiopathy, NC)。其中DR严重程度:轻度NPDR<中度NPDR<重度NPDR<PDR。根据国际对糖尿病黄斑水肿(diabetic macular edema, DME)的分级标准分为累及中心凹的糖尿病性黄斑水肿组(central involed diabetic macular edema, CI-DME)、未累及中心凹的糖尿病性黄斑水肿组(non-central involed diabetic macular edema, NCI-DME)、无糖尿病性黄斑水肿组(no macular edema, NDME)。其中DME严重程度:NCI-DME<CI-DME。采集一般临床资料,计算并分析HGI在各组之间的差异。 结果 NPDR组、PDR组HGI显著高于NC组,且PDR组HGI高于NPDR组。NCI-DME组、CI-DME组HGI显著高于NDME组,且CI-DME组HGI高于NCI-DME组。单因素Logistic回归分析结果显示,糖尿病病程(P<0.01)、体质量指数(P=0.01)、舒张压(P=0.04)、HGI(P=0.01)、空腹血糖(P=0.04)、HbA1c(P=0.01)与T2DM患者发生糖尿病视网膜病变(diabetic retinopathy, DR)差异有统计学意义;HGI与DR严重程度差异有统计学意义(P<0.001)。 结论 HGI与DR、DME的严重程度密切相关。

关键词: 糖化血红蛋白变异指数, 糖尿病视网膜病变, 黄斑水肿, 黄斑中心凹厚度

Abstract: Objective This study investigated the correlation between hemoglobin variation index(HGI)and the severity of retinopathy and macular edema in patients with type 2 diabetes mellitus(T2DM). Methods A total of 294 T2DM patients were enrolled. Based on the 2022 International Academy of Ophthalmology diagnostic criteria for diabetic retinopathy(DR), patients were classified into: proliferative DR(PDR), non-PDR(NPDR), and no microangiopathy(NC). DR severity was further categorized as mild NPDR, moderate NPDR, severe NPDR, and PDR. According to the international grading standards for diabetic macular edema(DME), patients were categorized as: central involved DME(CI-DME), non-central involved DME(NCI-DME), and no central involved DME(NDME). DME severity: NCI-DME <CI-DME. General clinical data were collected, and HGI differences between groups were analyzed. Results Patients with NPDR and PDR group had significantly higher HGI than those with NC. PDR patients had higher HGI than NPDR patients. Similarly, NCI-DME and CI-DME patients had significantly higher HGI than NDME patients, with CI-DME having the highest HGI. Univariate Logistic regression analysis revealed significant correlations between the presence of DR and T2DM, course of diabetes(P<0.01), body mass index(P=0.01), diastolic blood pressure(P=0.04), HGI(P=0.01), fasting plasma glucose(P=0.04), and HbA1c(P=0.01). Additionally, a significant correlation(P<0.001)was found between HGI and DR severity. Conclusion HGI is closely associated with the severity of both DR And DME in T2DM patients.

Key words: Glycated hemoglobin variation index, Diabetic retinopathy, Macular edema, Macular fovea thickness

中图分类号: 

  • R774.1
[1] Fenwick EK, Bansback N, Gan ATL, et al. Validation of a novel diabetic retinopathy utility index using discrete choice experiments[J]. Br J Ophthalmol, 2020, 104(2): 188-193. doi:10.1136/bjophthalmol-2019-313899
[2] Wang HY, Fang JW, Chen FG, et al. Metabolomic profile of diabetic retinopathy: a GC-TOFMS-based approach using vitreous and aqueous humor[J]. Acta Diabetol, 2020, 57(1): 41-51. doi:10.1007/s00592-019-01363-0
[3] López-Contreras AK, Martínez-Ruiz MG, Olvera-Montaño C, et al. Importance of the use of oxidative stress biomarkers and inflammatory profile in aqueous and vitreous humor in diabetic retinopathy[J]. Antioxidants, 2020, 9(9): 891. doi:10.3390/antiox9090891
[4] Hsia DS, Rasouli N, Pittas AG, et al. Implications of the hemoglobin glycation index on the diagnosis of prediabetes and diabetes[J]. J Clin Endocrinol Metab, 2020, 105(3): e130-e138. doi:10.1210/clinem/dgaa029
[5] Wang SB, Gu LF, Chen JW, et al. Association of hemoglobin glycation index and glycation gap with cardiovascular disease among US adults[J]. Diabetes Res Clin Pract, 2022, 190: 109990. doi:10.1016/j.diabres.2022.109990
[6] Wang ZW, Liu YH, Xie J, et al. Association between hemoglobin glycation index and subclinical myocardial injury in the general population free from cardiovascular disease[J]. Nutr Metab Cardiovasc Dis, 2022, 32(2): 469-478. doi:10.1016/j.numecd.2021.10.018
[7] Hempe JM, Hsia DS. Variation in the hemoglobin glycation index[J]. J Diabetes Complications, 2022, 36(7): 108223. doi:10.1016/j.jdiacomp.2022.108223
[8] Klein KR, Franek E, Marso S, et al. Hemoglobin glycation index, calculated from a single fasting glucose value, as a prediction tool for severe hypoglycemia and major adverse cardiovascular events in DEVOTE[J]. BMJ Open Diabetes Res Care, 2021, 9(2): e002339. doi:10.1136/bmjdrc-2021-002339
[9] Ibarra-Salce R, Pozos-Varela FJ, Martinez-Zavala N, et al. Correlation between hemoglobin glycation index measured by continuous glucose monitoring with complications in type 1 diabetes[J]. Endocr Pract, 2023, 29(3): 162-167. doi:10.1016/j.eprac.2023.01.001[PubMed]
[10] 陈晓正, 李珍梅, 林慧卿, 等. 糖化血红蛋白变异指数与糖尿病视网膜病变的相关性研究[J]. 中国糖尿病杂志, 2018, 26(3): 188-192. doi:10.3969/j.issn.1006-6187.2018.03.002 CHEN Xiaozheng, LI Zhenmei, LIN Huiqing, et al. Relationship between glycated hemoglobin variability index and risk of diabetic retinopathy in patients with type 2 diabetes[J]. Chinese Journal of Diabetes, 2018, 26(3): 188-192. doi:10.3969/j.issn.1006-6187.2018.03.002
[11] Teo ZL, Tham YC, Yu M, et al. Global prevalence of diabetic retinopathy and projection of burden through 2045: systematic review and meta-analysis[J]. Ophthalmology, 2021, 128(11): 1580-1591. doi:10.1016/j.ophtha.2021.04.027
[12] 唐婷, 赵勋, 李金萍. 糖尿病性视网膜病变患者空腹血糖、糖化血红蛋白及血清C肽水平与眼底病变严重程度的相关性分析[J]. 糖尿病新世界, 2023, 26(9): 173-177. doi:10.16658/j.cnki.1672-4062.2023.09.173 TANG Ting, ZHAO Xun, LI Jinping. Correlation analysis of fasting blood glucose, glycosylated hemoglobin and serum C-peptide levels with the severity of fundus lesions in patients with diabetic retinopathy[J]. Diabetes New World, 2023, 26(9): 173-177. doi:10.16658/j.cnki.1672-4062.2023.09.173
[13] Li PP, Zhang P, Guan DW, et al. Changes in racial and ethnic disparities in glucose-lowering drug utilization and glycated haemoglobin A1c in US adults with diabetes: 2005-2018[J]. Diabetes Obes Metab, 2023, 25(2): 516-525. doi:10.1111/dom.14894
[14] Xie SS, Luo XT, Dong MH, et al. Association between hemoglobin glycation index and metabolic syndrome in middle-aged and older people[J]. Diabetes Metab Syndr Obes, 2023, 16: 1471-1479. doi:10.2147/DMSO.S406660
[15] 胡佳琪, 周倩倩, 徐慧君, 等. HbA1c变异性对糖尿病视网膜病变的影响及其截断值的判定[J]. 眼科新进展, 2020, 40(10): 967-971. doi:10.13389/j.cnki.rao.2020.0217 HU Jiaqi, ZHOU Qianqian, XU Huijun, et al. Effect of HbA1c variability on diabetic retinopathy and its cut-off value for early diabetic retinopathy diagnosis[J]. Recent Advances in Ophthalmology, 2020, 40(10): 967-971. doi:10.13389/j.cnki.rao.2020.0217
[16] Sanz-González SM, García-Medina JJ, Zanón-Moreno V, et al. Clinical and molecular-genetic insights into the role of oxidative stress in diabetic retinopathy: antioxidant strategies and future avenues[J]. Antioxidants, 2020, 9(11): 1101. doi:10.3390/antiox9111101
[17] Hsueh YJ, Chen YN, Tsao YT, et al. The pathomechanism, antioxidant biomarkers, and treatment of oxidative stress-related eye diseases[J]. Int J Mol Sci, 2022, 23(3): 1255. doi:10.3390/ijms23031255
[18] Checa J, Aran JM. Reactive oxygen species: drivers of physiological and pathological processes[J]. J Inflamm Res, 2020, 13: 1057-1073. doi:10.2147/JIR.S275595
[19] Li M, Tian MM, Wang YL, et al. Updates on RPE cell damage in diabetic retinopathy(Review)[J]. Mol Med Rep, 2023, 28(4): 185. doi:10.3892/mmr.2023.13072
[20] Tabatabaei-Malazy O, Peimani M, Mohseni S, et al. Therapeutic effects of dietary antioxidative supplements on the management of type 2 diabetes and its complications; umbrella review of observational/trials meta-analysis studies[J]. J Diabetes Metab Disord, 2022, 21(2): 1833-1859. doi:10.1007/s40200-022-01069-1
[21] Yang J, Liu ZS. Mechanistic pathogenesis of endothelial dysfunction in diabetic nephropathy and retinopathy[J]. Front Endocrinol, 2022, 13: 816400. doi:10.3389/fendo.2022.816400
[22] 王娇娇, 李苗, 宋宗明. 糖尿病视网膜病变的机制和细胞模型研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 93-99. doi: 10.6040/j.issn.1673-3770.0.2021.203 WANG Jiaojiao, LI Miao, SONG Zongming. Progress in diabetic retinopathy mechanisms and cellular models[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 93-99. doi: 10.6040/j.issn.1673-3770.0.2021.203
[23] Yumnamcha T, Guerra M, Singh LP, et al. Metabolic dysregulation and neurovascular dysfunction in diabetic retinopathy[J]. Antioxidants, 2020, 9(12): 1244. doi:10.3390/antiox9121244
[24] Cao X, Xue LD, Di Y, et al. MSC-derived exosomal lncRNA SNHG7 suppresses endothelial-mesenchymal transition and tube formation in diabetic retinopathy via miR-34a-5p/XBP1 axis[J]. Life Sci, 2021, 272: 119232. doi:10.1016/j.lfs.2021.119232
[25] Wang E, Feng B, Chakrabarti S. MicroRNA 9 is a regulator of endothelial to mesenchymal transition in diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2023, 64(7): 13. doi:10.1167/iovs.64.7.13
[1] 周静琳,李金香,曾琦. 577 nm阈值下微脉冲激光联合抗VEGF药物治疗难治性糖尿病性黄斑水肿的疗效观察[J]. 山东大学耳鼻喉眼学报, 2024, 38(2): 18-25.
[2] 伦英俊,陈晨,高宏程,范清琳,邰仁清. TLR4/NF-κB通道在糖尿病视网膜病变中的作用[J]. 山东大学耳鼻喉眼学报, 2024, 38(2): 163-168.
[3] 唐慧新,李景景,邹红. 阈值下微脉冲激光光凝作用机制及临床应用[J]. 山东大学耳鼻喉眼学报, 2023, 37(3): 143-148.
[4] 刘通,林玮,冯萌,杨依,刘婷婷,张敏. 基于网络药理学分析小檗碱在免疫微环境中对糖尿病视网膜病变的作用及实验验证[J]. 山东大学耳鼻喉眼学报, 2023, 37(1): 94-104.
[5] 顾冉冉,李凤娇,焦万珍,崔艳艳,赵博军. 卵磷脂络和碘胶囊辅助治疗视网膜静脉阻塞的临床疗效研究[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 46-50.
[6] 王娇娇,李苗宋宗明. 糖尿病视网膜病变的机制和细胞模型研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 93-99.
[7] 王惠, 王俊,孙乙,于腾飞,朱玉广, 朱艳. 玻璃体腔注射HGF-MSCs对糖尿病大鼠视网膜HGF表达的影响[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 72-77.
[8] 刘志高,王淑雅,韩旭光,王玉,李志伟,马爱华,赵博军. 增殖性糖尿病视网膜病变术前玻璃体腔应用阿柏西普的时机及其疗效观察[J]. 山东大学耳鼻喉眼学报, 2021, 35(1): 99-103.
[9] 韩克阳,于贝贝,赵博军. 短期视网膜静脉阻塞抗VEGF治疗后黄斑区形态结构分析[J]. 山东大学耳鼻喉眼学报, 2019, 33(5): 129-131.
[10] 刘建波,张环. 超声乳化联合玻璃体腔药物注射治疗白内障合并糖尿病性黄斑水肿[J]. 山东大学耳鼻喉眼学报, 2019, 33(2): 99-104.
[11] 李宝华,刘平,王新. β-榄香烯影响糖尿病大鼠视网膜中IL-1β、ICAM-1表达分析[J]. 山东大学耳鼻喉眼学报, 2019, 33(2): 111-114.
[12] 刘万智,陈珺,樊长春. 康柏西普治疗增生性糖尿病视网膜病变[J]. 山东大学耳鼻喉眼学报, 2018, 32(6): 88-91.
[13] 周学义,李一鸣,王美菊,张苑苑,张历浊. 25+微创玻璃体视网膜手术联合玻璃体腔注射雷珠单抗治疗增生型糖尿病视网膜病变的临床观察[J]. 山东大学耳鼻喉眼学报, 2017, 31(4): 87-89.
[14] 周玮琰,王洪亚,杜秀娟,董卫红. 甘糖酯对糖尿病大鼠视网膜病变中血管生成因子VEGF表达的影响[J]. 山东大学耳鼻喉眼学报, 2017, 31(2): 90-95.
[15] 靳琳,潘庆敏,胡磊. 玻璃体腔注射雷珠单抗治疗CSME及NCSME的临床观察[J]. 山东大学耳鼻喉眼学报, 2017, 31(2): 96-98.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张晗,黄一飞 . 抗角膜移植排斥的研究进展[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 84 -87 .
[2] 牛善利,柴茂文,李振秀 . 鼻内镜下鼻甲成形术治疗慢性肥厚性鼻炎60例[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 16 -18 .
[3] 孟庆国,卢永田,范献良 . 杀伤细胞免疫球蛋白样受体基因多态性与鼻咽癌的关联性[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 196 -199 .
[4] 马玉起,孔祥春 . 先天性双侧下唇窦道1例[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 199 -199 .
[5] 万俐佳,鲁海涛,姜义道,刘 辉,李 琴,佘腊枝 . 改良腭咽成形术治疗阻塞性睡眠呼吸暂停综合征41例[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 204 -205 .
[6] 于青青 ,王跃建 . 硬质耳内镜的临床应用进展[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 222 -224 .
[7] 吉晓滨,邓家德,臧林泉,王 磊,谢 军 . 豚鼠变应性鼻炎模型血清组胺的测定[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 228 -230 .
[8] 向登,卢永田,孙焕吉 . 鼻内镜下修补脑脊液鼻漏19例并文献复习[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 234 -236 .
[9] 邱恩惠,李志春,方文旭 . 嗅觉障碍的中西医治疗[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 253 -257 .
[10] 殷国华,钟 笑 . 激光减容术治疗舌扁桃体肥大的远期疗效[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 280 -282 .