山东大学耳鼻喉眼学报 ›› 2017, Vol. 31 ›› Issue (6): 92-96.doi: 10.6040/j.issn.1673-3770.0.2017.188

• 综述 • 上一篇    下一篇

原发性开角型青光眼易感基因研究进展

赵栋栋1,2, 王艺3, 高建鲁2   

  1. 1. 泰山医学院, 山东 泰安 271000;
    2. 聊城市人民医院眼科, 山东 聊城 252000;
    3. 泰山医学院附属医院眼科, 山东 泰安 271000
  • 收稿日期:2017-05-02 出版日期:2017-12-16 发布日期:2017-12-16
  • 通讯作者: 高建鲁. E-mail:drgaojianlu@163.com

Common susceptibility genes of primary open-angle glaucoma.

ZHAO Dongdong1,2, WANG Yi3, GAO Jianlu2.   

  1. Taishan Medical College, Taian 271000, Shandong, China;2. Department of Ophthalmology, Liaocheng Peoples Hospital, Liaocheng 252000, Shandong, China;3. Department of Opthalmology, Affiliated Hospital of Taishan Medical College, Taian 271000, Shandong, China
  • Received:2017-05-02 Online:2017-12-16 Published:2017-12-16

摘要: 原发性开角型青光眼(POAG)是一种慢性进行性前部视神经病变,伴有典型的视杯凹陷和视野缺损,其发病机制尚不明确。目前,大量研究表明基因的变异与遗传在原发性开角型青光眼的发病中起着重要作用。已发现原发性开角型青光眼相关基因约20个,但与POAG明确相关的基因仅有三个:肌纤蛋白基因(MYOC)、视神经病变诱导基因(OPTN)、WDR36基因(WDR36)。小凹蛋白基因(CAV1/CAV2)以及细胞色素P450家族基因(CYP1B1)已成为青光眼遗传和基因研究的热点。综述就以上五个POAG相关基因的定位、结构及其可能的作用机制。

关键词: 致病基因, 致病机制, 原发性开角型青光眼, 基因变异

Abstract: Primary open-angle glaucoma(POAG)is a neuropathy that can lead to irreversible visual field defects, and it is currently the second major disease in the world known to cause blindness. To date, significant research has demonstrated that genes and genetic variation play an important role in the glaucomatous pathogenesis; however, the mechanism is not yet entirely clear. Although more than 20 loci have been found to be linked with POAG, only three underlying genes have been identified(MYOCilin, optineurin, and WD repeat domain 36). The newly discovered caveolin 1/caveolin 2 gene and candidate gene cytochrome P450 family 1 subfamily B member 1 have also become hotspots in glaucoma genetic research. In this article, we will review the location, structure, and possible mechanisms of action of the aforementioned five pathogenic genes in relation to the pathogenesis of POAG.

Key words: Genetic variation, POAG, Pathogenic mechanism, Virulence gene

中图分类号: 

  • R775.2
[1] Quigley HA. The number of people with glaucoma worldwide in 2010 and 2020[J].Br J Ophthalmol, 2006, 90(3):262-267.
[2] Stone EM, Fingert JH, Alward WL, et al. Identification of a gene that causes primary open angle glaucoma[J]. Science, 1997, 275(5300): 668-670.
[3] Polansky JR, Fauss DJ, Chen P, et al. Cellular pharmacology and molecular biology of the trabecular meshwork inducible glucocorticoid response gene product[J]. Opthalmologica, 1997, 211(3): 126-139.
[4] Ortego J, Escribano J. Gene expression of proteases and protease inhibitors in the human ciliary epithelium and ODM-2 cells[J]. Exp Eye Res, 1997, 65(2): 289-299.
[5] Kubota R, Kudoh J, Mashima Y, et al. Genomic organization of the human myocilin gene(MYOC)responsible for primary open angle glaucoma(GLCIA)[J]. Biochem Biophys Res Commun, 1998, 242(2):396-400.
[6] Aroca Aguilar JD, Sánchez F, Ghosh S, et al. MYOC mutations causing glaucoma inhibit the intracellular endoproteolytic cleavage of MYOC between amino acids Arg226 and Ile227[J]. J Biol Chem, 2005, 280(22): 21043-21051.
[7] Kwon HS, Lee HS, Ji Y, et al. MYOC allele-specific glaucoma phenotype database[J]. Hum Mutat, 2008, 29(2): 207-211.
[8] Gould DB, Miceli-Libby L, Savinova OV, et al. Genetically increasing MYOC expression supports a necessary pathologic role of abnormal proteins in glaucoma[J]. Mol Cell Biol, 2004, 24(20): 9019-9025.
[9] Kim BS, Savinova OV, Reedy MV, et al. Targeted disruption of the MYOC gene(MYOC)suggests that human glaucoma-causing mutations are gain of function[J]. Mol Cell Biol, 2001, 21(22): 7707-7713.
[10] Zillig M, Wurm A, Grehn FJ, et al. Overexpression and properties of wild-type and Tyr437His mutated MYOC in the eyes of transgenie mice[J]. Invest Ophthalmol Vis Sci, 2005, 46(1): 223-234.
[11] Wang X, Johnson DH. mRNA in situ hybridization of TIGR/MYOC in human trabecular meshwork[J]. Invest Ophthalmol Vis Sci, 2000, 41(7): l724-l729.
[12] Karali A, Russell P, Stefani FH, et al. Localization of MYOC trabecular meshwork-inducible glucocorticoid response protein in the human eye[J]. Invest Ophthalmol Vis Sci, 2000, 41(3): 729-740.
[13] Kwon HS, Lee HS, Ji Y, et al. MYOC is a modulator of Wnt signaling[J]. Mol Cell Biol, 2009, 29(8): 2139-2154.
[14] Sarfarazi M, Child A, Stoilova D, et al. Localization of the fourth locus(GLC 1E)for adult-onset primary open-angle glaucoma to the 10p15-p14 region[J]. Am J Hum Genet, 1998, 62(3): 641-652.
[15] Rezaie T, Child A, Hitchings R, et al. Adult-onset primary open-angle glaucoma caused by mutatious in optineurin[J]. Sci, 2002, 295(5557): 1077-1079.
[16] Hauser MA, Sena DF, Flor J, et al. Distribution of optineurin sequence variations in an ethnically diverse population of low-tension glaucoma patients from the United States[J]. Glaucoma, 2006, 15(5): 358-363.
[17] Craig JE, Hewitt AW, Dimasi DP, et al. The role of the Met98Lys optineurin variant in inherited optic nerve diseases[J]. Br J Ophthalmol, 2006, 90(11): 1420-1424.
[18] Kroeber M, Ohlmann A, Russell P, et al. Transgenic studies on the role of optineurin in the mouse eye [J]. Exp Eye Res, 2006, 82(6): 1075-1085.
[19] Vittitow J, Borrás T. Expression of optineurin, a glaucoma-linked gene is influenced by elevated intraocular pressure[J]. Bioc Bioph Res Commun, 2002, 298(1): 67-74.
[20] Samples JR, Kitsos G, Economou—Petersen E, et al.Refining the primary open-angle glaucoma GLC1C region on chromosome 3 by haplotype analysis[J]. Clin Genet, 2004, 65(1): 40-44.
[21] Monemi S, Spaeth G, Dasilva A, et al. Identification of a novel adult-onset primary open—angle glaucoma(POAG)gene on 5q22.1[J]. Hum Mol Genet, 2005, 14(6): 725-733.
[22] Skarie JM, Link BA. The primary open-angle glaucoma gene WDR36 functions in ribosomal RNA processing and interacts with the p53 stress-response pathway[J]. Hum Mol Genet, 2008, 17(16): 2474-2485.
[23] Footz TK, Johnson JL, Dubois S, et al. Glaucoma-associated WDR36 variants encode functional defects in a yeast model system[J]. Hum Mol Genet, 2009, 18(7): 1276-1287.
[24] Thorleifsson G, Walters GB, Hewitt AW, et al. Common variants near cAVl and cAV2 are associated wilh primary open angle glaucoma[J]. Nat Genet, 2010, 42(10): 906-909.
[25] Tamm ER. The trabecular meshwork outflow pathways:structural and functional aspects[J]. Exp Eye Res, 2009. 88(4): 648-655.
[26] Loomis SJ, Kang JH, Weinreb RN, et al. Association of CAV1/CAV2 genomic variants with primary open-angle glaucoma overall and by gender and pattern of visual field loss[J]. Ophthalmology, 2014, 121(2): 508-516.
[27] Park SC, De Moraes CG, Teng CC, et al. Initial parafoveal versus peripheral scotomas in glaucoma: risk factors and visual field characteristics[J]. Ophthalmology, 2011, 118(9): 1782-1789.
[28] Fuchshofer R, Tamm ER. The role of TGF-β in the pathogenesis of primary open-angle glaucoma[J]. Cell Tissue Res, 2012, 347(1): 279-290.
[29] Stoilov I, Akarsu AN, Sarfarazi M. Identification of three different truncating mutations in cytochrome P4501 B1(CYP1 B1)as the principal cause of primary congenital glaucoma(buphthalmos)in families linked to the GLC3A locus on chromosome 2p2l [J]. Hum Mol Genet, 1997, 6(4):641-647.
[30] Tang YM, Wo YY, Stewart J, et al. Isolation and characterization of the human cytochrome P450 CYP1B1 gene[J]. J Biol Chem, 1996, 271: 28324-28330.
[31] Tang YM, Wo YY, Stewart J, et al. Isolation and characterization of the human cytochrome P450 CYP1B1 gene[J]. J Biol Chem, 1996, 271(45):28324-28330.
[32] Libby RT, Smith RS, Savinova OV, et al. Modification of ocular defects in mouse developmental glaucoma models by tyrosinase[J]. Sci, 2003, 299(5612):1578-1581.
[33] Chen H, Howald WN. Biosynthesis of all-trans-retinoic acid from all-trans-retinol: catalysis of all-trans-retinol oxidation by human P-450 cytochromes.[J]. Drug Metab Dispos, 2000, 28(3):315-322.
[34] Choudhary D, Jansson I, Stoilov I, et al. Metabolism of retinoids and arachidonic acid by human and mouse cytochrome P450lbl[J]. Drug Metab Dispos, 2004, 32(8): 840-847.
[35] Jansson I, Stoilov I, Sarfarazi M, et al. Effect of two mutations of human CYP1B1, G61E and R469W, on stability and endogenous steroid substrate metabolism[J]. Pharmacogenetics, 2001, 11(9): 793-801.
[36] Aklillu E, Oscarson M, Hidestrand M, et al. Function analysis of six different polymorphic CYP1Bl enzyme variants found in an Ethiopian population[J]. Mol Pharmacol, 2002, 61(3): 586-594.
[1] 翟玉喜,高建鲁. 原发性开角型青光眼患者血清miR-29b差异性表达[J]. 山东大学耳鼻喉眼学报, 2013, 27(6): 79-81.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!