山东大学耳鼻喉眼学报 ›› 2020, Vol. 34 ›› Issue (3): 40-45.doi: 10.6040/j.issn.1673-3770.1.2020.031

• 临床研究 • 上一篇    下一篇

基于XGBoost人工智能结合CT构建甲状腺癌颈部淋巴结转移预测模型

陈海兵1, 卫亚楠1, 许晓泉2, 陈曦1   

  1. 南京医科大学第一附属医院/江苏省人民医院 1. 耳鼻咽喉科;
    2. 影像科, 江苏 南京 210029
  • 发布日期:2020-06-29
  • 通讯作者: 陈曦. E-mail: jsxycx@sina.com
  • 基金资助:
    江苏省卫生健康委员会面上项目(H2018013)

Prediction of cervical lymph node metastasis in papillary thyroid cancer based on XGBoost artificial intelligence and enhanced computed tomography

CHEN Haibing1, WEI Ya'nan1, XU Xiaoquan2, CHEN Xi1   

  1. 1. Department of Otorhinolaryngology;
    2. Department of Radiology, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, Jiangsu, China
  • Published:2020-06-29

摘要: 目的 基于极端梯度提升算法人工智能建立甲状腺癌患者术前CT颈部淋巴结转移的预测模型,为临床制定规范的治疗方案提供参考依据。 方法 回顾性分析2017年10月~2019年5月38例甲状腺乳头状癌患者临床资料,共纳入135个淋巴结数据。采集甲状腺癌淋巴结转移相关变量及CT参数,基于XGBoost人工智能评估数据特征属性重要性,建立淋巴结转移预测模型,采用五折交叉验证方法训练测试模型。 结果 基于XGBoost人工智能甲状腺癌CT淋巴结转移预测模型准确率平均为87.41%,优于支持向量机机器学习算法模型79.22%。淋巴结强化、强化不均匀、原发灶同侧淋巴结及淋巴结有包膜侵犯是提示淋巴结转移的重要的CT特征属性。 结论 基于XGBoost人工智能建立的甲状腺癌患者术前CT颈部淋巴结转移的预测模型准确率高,可以帮助临床医师术前判断甲状腺癌是否伴有颈部淋巴结转移,评估肿瘤TNM分期,并制定规范的手术治疗方案。

关键词: 甲状腺癌, 淋巴结转移, XGBoost, 人工智能, 预测模型

Abstract: Objective Incorporating eXtreme Gradient Boosting(XGBoost)artificial intelligence, we aimed to build a predictive model using pre-operative enhanced computed tomography(CT)of cervical lymph node metastasis in patients with thyroid cancer, to provide a reference for pre-operative planning. Methods The clinical data of 38 patients with thyroid papillary carcinoma from October 2017 to May 2019 were retrospectively analyzed. A total of 135 lymph nodes were included. Using XGBoost artificial intelligence, the lymph node metastasis prediction model was established, and the accuracy of the prediction model was tested. Results The average accuracy of the XGBoost model was 87.41%, which was higher than that of the SVM model(79.2%). Important CT characteristics that are indicative of lymph node metastasis include degree and distribution of enhancement, location, and capsule invasion. Conclusion The predictive model of cervical lymph node metastasis in patients with thyroid cancer exhibits high accuracy and could help in the pre-operative evaluation of cervical lymph node metastasis, tumor staging, and surgical procedures.

Key words: Thyroid cancer, Lymph node metastasis, XGBoost, Artificial intelligence, Prediction model

中图分类号: 

  • R736
[1] Rosenbaum MA, McHenry CR. Contemporary management of papillary carcinoma of the thyroid gland[J]. Expert Rev Anticancer Ther, 2009, 9(3): 317-329. doi:10.1586/14737140.9.3.317.
[2] Hay ID. Papillary thyroid carcinoma[J]. medicina clínica, 1990, 132(8):675-676.
[3] Leboulleux S, Rubino C, Baudin E, et al. Prognostic factors for persistent or recurrent disease of papillary thyroid carcinoma with neck lymph node metastases and/or tumor extension beyond the thyroid capsule at initial diagnosis[J]. J Clin Endocrinol Metab, 2005, 90(10): 5723-5729. doi:10.1210/jc.2005-0285.
[4] 王莎莎, 林岩松, 梁军, 等. 甲状腺乳头状癌首次治疗术式对预后影响的分析[J]. 中华肿瘤防治杂志, 2012, 19(10): 761-765. doi:10.16073/j.cnki.cjcpt. 2012.10.014. WANG Shasha, LIN Yansong, LIANG Jun, et al. Initial surgical procedure impact on prognosis of papillary thyroid carcinoma[J]. Chinese Journal of Cancer Prevention and Treatment, 2012, 19(10): 761-765. doi:10.16073/j.cnki.cjcpt.2012.10.014.
[5] 高晓倩, 姜震, 耿琛琛, 等. 术前超声评估分化型甲状腺癌颈部淋巴结转移[J]. 山东大学耳鼻喉眼学报, 2019, 33(1): 135-139. doi: 10.6040/j.issn.1673-3770.0.2018.443. GAO Xiaoqian, JIANG Zhen, GENG Chenchen, et al. Preoperative ultrasonography in detecting cervical lymph node metastasis in differentiated thyroid cancer[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(1): 135-139.
[6] 施燕芸, 李念芬, 孙红光, 等. 超声造影预测甲状腺乳头状癌颈部淋巴结转移的临床价值[J]. 临床超声医学杂志, 2018, 20(8): 526-530. doi:10.16245/j.cnki.issn1008-6978.2018.08.007. SHI Yanyun, LI Nianfen, SUN Hongguang, et al. Clinical value of contrast-enhanced ultrasonography in predicting cervical lymph node metastasis of papillary thyroid carcinoma[J]. Journal of Clinical Ultrasound in Medicine, 2018, 20(8): 526-530. doi:10.16245/j.cnki.issn1008-6978.2018.08.007.
[7] 樊金芳, 余小情, 陶玲玲, 等. 超声弹性成像及超声造影预测甲状腺乳头状癌淋巴结转移的价值探讨[J]. 中国医学计算机成像杂志, 2019, 25(1): 67-71. doi:10.19627/j.cnki.cn31-1700/th.2019.01.014. FAN Jinfang, YU Xiaoqing, TAO Lingling, et al. Value of ultrasound elastography and contrast ultrasoundin predicting lymph node metastasis of thyroid papillary carcinoma[J]. Chinese Computed Medical Imaging, 2019, 25(1): 67-71. doi:10.19627/j.cnki.cn31-1700/th.2019.01.014.
[8] 林启强, 韩志江, 舒艳艳, 等. CT在评估甲状腺乳头状癌中央组淋巴结转移中的价值[J]. 中国临床医学影像杂志, 2015, 26(3): 162-165, 205. LIN Qiqiang, HAN Zhijiang, SHU Yanyan, et al. Value of CT in diagnosing central lymph node metastasis of papillary thyroid carcinoma[J]. Journal of China Clinic Medical Imaging, 2015, 26(3): 162-165, 205.
[9] Chen TQ, Guestrin C. XGBoost[C] //Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco California USA. New York, NY, USA: ACM, 2016. doi:10.1145/2939672.2939785.
[10] Koo BS, Choi EC, Yoon YH, et al. Predictive factors for ipsilateral or contralateral central lymph node metastasis in unilateral papillary thyroid carcinoma[J]. Ann Surg, 2009, 249(5): 840-844. doi:10.1097/sla.0b013e3181a40919.
[11] Ito Y, Jikuzono T, Higashiyama T, et al. Clinical significance of lymph node metastasis of thyroid papillary carcinoma located in one lobe[J]. World J Surg, 2006, 30(10): 1821-1828. doi:10.1007/s00268-006-0211-5.
[12] 张正华, 黄建强, 韩丹, 等. 甲状腺癌的CT表现与颈淋巴结转移的相关性[J]. 中国医学影像学杂志, 2013, 21(11): 804-807, 811. doi: 10.3969/j.issn.1005-5185.2013.11.002. ZHANG Zhenghua, HUANG Jianqiang, HAN Dan, et al. CT manifestations of thyroid carcinoma and its correlation with lymph node metastasis[J]. Chinese Journal of Medical Imaging, 2013, 21(11): 804-807, 811. doi: 10.3969/j.issn.1005-5185.2013.11.002.
[13] 王天笑, 宋韫韬, 徐国辉, 等. 细针穿刺技术在甲状腺乳头状癌侧颈淋巴转移中的预测价值[J]. 中华耳鼻咽喉头颈外科杂志, 2019, 54(1): 23-27. doi: 10.3760/cma.j.issn.1673-0860.2019.01.006. WANG Tianxiao, SONG Yuntao, XU Guohui, et al. Fine-needle aspiration for the diagnosis of lymph node metastasis in papillary thyroid carcinoma[J]. Chinese Journal of Otorhinolaryngology Head and Neck Surgery, 2019, 54(1): 23-27. doi: 10.3760/cma.j.issn.1673-0860.2019.01.006.
[14] 葛智成, 屈翔, 滕长胜, 等. USG和增强CT对甲状腺癌与中央区淋巴结转移的研究[J]. 国际外科学杂志, 2012(2): 87-90. doi: 10.3760/cma.j.issn.1673-4203.2012.02.005. GE Zhicheng, QU Xiang, TENG Changsheng, et al. Study of ultrasonography and contrast-enhanced computer tomography in the diagnosis of thyroid carcinoma and lymph node metastasis[J]. International Journal of Surgery, 2012(2): 87-90. doi: 10.3760/cma.j.issn.1673-4203.2012.02.005.
[15] 李强, 赵博文, 吕江红, 等. FNA-Tg测定在细针穿刺诊断甲状腺癌术后侧颈区可疑肿大淋巴结中的应用价值[J]. 中华耳鼻咽喉头颈外科杂志, 2016, 51(5):378-382. doi: 10.3760/cma.j.issn.1673-0860.2016.05.012. LI Qiang, ZHAO Bowen, LV Jianghong, et al. The value of thyroglobulin measurement in fine-needle aspiration for diagnosis of suspicious lymph nodes in patients with thyroid carcinoma after thyroidectomy[J]. Chinese JOurnal of Otorhinolaryngology Head and Neck Surgery, 2016, 51(5):378-382. doi: 10.3760/cma.j.issn.1673-0860.2016.05.012.
[16] Seo SH, Lee JH, Soh EY. In thyroid cancer patients, is preoperative FNAB-C reliable for prediction of lateral cervical LN metastasis?[J]. Korean J Endocr Surg, 2014, 14(2): 76. doi:10.16956/kjes.2014.14.2.76.
[17] 纪宇楠. 基于随机森林构建滤泡型甲状腺癌远处转移预测模型[D]. 沈阳: 中国医科大学, 2018.
[18] 郭芳琪, 赵佳琦, 刘晟. 人工智能自动检测系统在甲状腺结节术前超声诊断中的应用[J]. 第二军医大学学报, 2019, 40(11): 1183-1189. doi:10.16781/j.0258-879x.2019.11.1183. GUO Fangqi, ZHAO Jiaqi, LIU Sheng. Application of artificial intelligence automatic detection system in preoperative ultrasonic diagnosis of thyroid nodules[J]. Academic Journal of Second Military Medical University, 2019, 40(11): 1183-1189. doi:10.16781/j.0258-879x.2019.11.1183.
[19] 李婷婷, 卢漫, 巫明钢, 等. 计算机辅助诊断系统对甲状腺结节的诊断价值研究[J]. 中华医学超声杂志(电子版), 2019, 16(9): 660-664. doi: 10.3877/cma.j.issn.1672-6448.2019.09.004. LI Tingting, LU Man, WU Minggang, et al. Performance of computer-aided diagnosis system versus radiologists in diagnosis of thyroid nodules[J]. Chinese Journal of Medical Ultrasound(Electronic Edition), 2019, 16(9): 660-664. doi: 10.3877/cma.j.issn.1672-6448.2019.09.004.
[20] Torlay L, Perrone-Bertolotti M, Thomas E, et al. Machine learning-XGBoost analysis of language networks to classify patients with epilepsy[J]. Brain Inform, 2017, 4(3): 159-169. doi:10.1007/s40708-017-0065-7.
[21] Zhong JC, Sun YS, Peng W, et al. XGBFEMF: an XGBoost-based framework for essential protein prediction[J]. IEEE Trans Nanobioscience, 2018, 17(3): 243-250. doi:10.1109/TNB.2018.2842219.
[22] Li W, Yin YB, Quan XW, et al. Gene expression value prediction based on XGBoost algorithm[J]. Front Genet, 2019, 10: 1077. doi:10.3389/fgene.2019.01077.
[23] Pang L, Wang JJ, Zhao LL, et al. A novel protein subcellular localization method with CNN-XGBoost model for Alzheimer's disease[J]. Front Genet, 2018, 9: 751. doi:10.3389/fgene.2018.00751.
[24] Zheng HT, Yuan JB, Chen L. Short-term load forecasting using EMD-LSTM neural networks with a xgboost algorithm for feature importance evaluation[J]. Energies, 2017, 10(8): 1168. doi:10.3390/en10081168.
[25] Li CB, Zheng XS, Yang ZK, et al. Predicting short-term electricity demand by combining the advantages of Arma and XGBoost in fog computing environment[J]. Wirel Commun Mob Comput, 2018, 2018: 1-18. doi:10.1155/2018/5018053.
[26] Jeong JJ, Lee YS, Lee SC, et al. A scoring system for prediction of lateral neck node metastasis from papillary thyroid cancer[J]. J Korean Med Sci, 2011, 26(8): 996-1000. doi:10.3346/jkms.2011.26.8.996.
[27] Yang YL, Chen CZ, Chen ZM, et al. Prediction of central compartment lymph node metastasis in papillary thyroid microcarcinoma[J]. Clin Endocrinol(Oxf), 2014, 81(2): 282-288. doi:10.1111/cen.12417.
[1] 陈东彦,钱晔,魏东敏,李文明,夏同良,雷大鹏,潘新良. 高频超声诊断下咽鳞癌淋巴结转移的临床研究[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 18-23.
[2] 华红利,李松,陶泽璋. 人工智能在鼻咽癌诊疗中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 113-119.
[3] 王迪,程金章,于丹. 基于机器学习的人工智能技术在耳鼻喉科临床诊疗中的应用进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(6): 125-131.
[4] 李静静,武欣欣,毛宁,郑桂彬,牟亚魁,初同朋,贾传亮,郑海涛,米佳,宋西成. 基于CT影像组学诺模图术前预测甲状腺乳头状癌颈部中央区淋巴结转移的研究[J]. 山东大学耳鼻喉眼学报, 2021, 35(4): 51-59.
[5] 张轶轶,薛刚,金春亭. 外泌体在甲状腺癌的研究进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(2): 131-135.
[6] 庞振文,黄愉峰,杨爱芳,曾先捷. 喉癌患者术前中性粒细胞/淋巴细胞比值与淋巴结转移的相关性研究[J]. 山东大学耳鼻喉眼学报, 2020, 34(6): 58-62.
[7] 潘新良. 加强甲状腺结节及恶性肿瘤的规范治疗[J]. 山东大学耳鼻喉眼学报, 2020, 34(3): 1-12.
[8] 邓迪, 刘均, 李林珂, 王吉, 刘吉峰, 吕丹, 王海洋, 甘卫刚, 王君, 李波, 陈飞. 皮瓣二期重建策略应用于气管非环周缺损修复重建[J]. 山东大学耳鼻喉眼学报, 2020, 34(3): 52-57.
[9] 房忠菊, 张永侠, 赵建东, 纵亮, 翟性友, 李新建, 彭新, 任楠, 陈立伟, 刘明波. 甲状腺癌颈清扫术后乳糜漏的综合治疗[J]. 山东大学耳鼻喉眼学报, 2020, 34(3): 64-68.
[10] 吕静荣,陈淳,马衍,谢晋. 儿童分化型甲状腺癌的临床特征及危险因素分析[J]. 山东大学耳鼻喉眼学报, 2020, 34(3): 88-94.
[11] 冯云,钟志明,陈国庆. 纳米碳在甲状腺乳头状癌隐匿性侧颈转移淋巴结清扫术中的临床应用价值[J]. 山东大学耳鼻喉眼学报, 2020, 34(3): 101-106.
[12] 马驰,郑桂彬,孙海清,吴国长,郭雅文,孔杨,宋西成,郑海涛. 加速康复外科理念应用于甲状腺癌手术100例[J]. 山东大学耳鼻喉眼学报, 2020, 34(3): 107-110.
[13] 王佳说, 郭星, 阎艾慧. 甲状腺乳头状癌颈淋巴结转移形成巨大囊性变的诊断总结[J]. 山东大学耳鼻喉眼学报, 2020, 34(3): 111-113.
[14] 宁玉东, 蔡永聪, 孙荣昊, 姜健, 周雨秋, 税春燕, 汪旭, 郑王虎, 何天琪, 李超. 甲状腺乳头状癌前上纵隔淋巴结转移临床病理特征初步分析[J]. 山东大学耳鼻喉眼学报, 2020, 34(3): 120-124.
[15] 朱志玲,李松,管国芳. 人工智能在耳鼻咽喉头颈外科的运用及展望[J]. 山东大学耳鼻喉眼学报, 2020, 34(2): 115-120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张晗,黄一飞 . 抗角膜移植排斥的研究进展[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 84 -87 .
[2] 牛善利,柴茂文,李振秀 . 鼻内镜下鼻甲成形术治疗慢性肥厚性鼻炎60例[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 16 -18 .
[3] 孟庆国,卢永田,范献良 . 杀伤细胞免疫球蛋白样受体基因多态性与鼻咽癌的关联性[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 196 -199 .
[4] 马玉起,孔祥春 . 先天性双侧下唇窦道1例[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 199 -199 .
[5] 万俐佳,鲁海涛,姜义道,刘 辉,李 琴,佘腊枝 . 改良腭咽成形术治疗阻塞性睡眠呼吸暂停综合征41例[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 204 -205 .
[6] 于青青 ,王跃建 . 硬质耳内镜的临床应用进展[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 222 -224 .
[7] 吉晓滨,邓家德,臧林泉,王 磊,谢 军 . 豚鼠变应性鼻炎模型血清组胺的测定[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 228 -230 .
[8] 向登,卢永田,孙焕吉 . 鼻内镜下修补脑脊液鼻漏19例并文献复习[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 234 -236 .
[9] 邱恩惠,李志春,方文旭 . 嗅觉障碍的中西医治疗[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 253 -257 .
[10] 殷国华,钟 笑 . 激光减容术治疗舌扁桃体肥大的远期疗效[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 280 -282 .