山东大学耳鼻喉眼学报 ›› 2021, Vol. 35 ›› Issue (5): 118-124.doi: 10.6040/j.issn.1673-3770.0.2020.418
冉宏运1,2,蒋可可1,2,张杰2
RAN Hongyun1,2, JIANG Keke1,2,ZHANG Jie2
摘要: 早产是指妊娠不足37周分娩,此时娩出的新生儿称为早产儿。早产儿视网膜病变是一类发生于早产儿和低体质量儿的视网膜血管异常增生性眼病,是全球范围内儿童致盲的主要原因。早产儿视网膜病变患儿发生屈光不正的风险高,其影响因素包括孕周、出生体质量、屈光参数以及治疗方式等,早期发现及干预ROP对患儿的视力预后至关重要。正文就可能影响早产儿视网膜病变患儿视觉发育及屈光状态的因素进行归纳与总结。
中图分类号:
[1] Higgins RD. Oxygen saturation and retinopathy of prematurity[J]. Clin Perinatol, 2019, 46(3): 593-599. doi:10.1016/j.clp.2019.05.008. [2] Cook A, White S, Batterbury M, et al. Ocular growth and refractive error development in premature infants with or without retinopathy of prematurity[J]. Invest Ophthalmol Vis Sci, 2008, 49(12): 5199-5207. doi:10.1167/iovs.06-0114. [3] 毛剑波, 劳吉梦, 刘忱怡,等. 早产儿出生后早期屈光状态及其影响因素[J]. 中华眼视光学与视觉科学杂志, 2018, 20(10):588-592. doi: 10.3760/cma.j.issn.1674-845X.2018.10.003. MAO Jianbo, LAO Jimeng, LIU Chenyi, et al. Factors influencing refractive development in early stages of prematurity[J]. Chin J Optom Ophthalmol Vis Sci, 2018, 20(10):588-592. doi: 10.3760/cma.j.issn.1674-845X.2018.10.003. [4] Ozdemir O, Tunay ZO, Acar DE, et al. Refractive errors and refractive development in premature infants[J]. J Fr Ophtalmol, 2015, 38(10): 934-940. doi:10.1016/j.jfo.2015.07.006. [5] Darlow BA, Gilbert C. Retinopathy of prematurity-A world update[J]. Semin Perinatol, 2019, 43(6): 315-316. doi:10.1053/j.semperi.2019.05.001. [6] Ouyang LJ, Yin ZQ, Ke N, et al. Refractive status and optical components of premature babies with or without retinopathy of prematurity at 3-4 years old[J]. Int J Clin Exp Med, 2015, 8(7): 11854-11861. [7] 常翠荣, 于建国, 齐世欣,等. 早产儿与足月儿学龄期屈光状态的2年随访研究[J]. 眼科新进展, 2018, 38(7):673-676. doi: 10.13389/j.cnki.rao.2018.0158. CHANG Cuirong, YU Jianguo, QI Shixin, et al. The refractive status in premature infants and full-term infants when they are at school age during 2 years follow-up[J]. Recent Advances in Ophthalmology, 2018, 38(7):673-676. doi: 10.13389/j.cnki.rao.2018.0158. [8] Varghese RM, Sreenivas V, Puliyel JM, et al. Refractive status at birth: its relation to newborn physical parameters at birth and gestational age[J]. PLoS One, 2009, 4(2): e4469. doi:10.1371/journal.pone.0004469. [9] 马燕, 邓光达, 麻婧, 等. 481例6周龄婴儿屈光状态的筛查及其检测结果的临床研究[J]. 中华眼科医学杂志(电子版), 2019, 9(2): 71-76. doi:10.3877/cma.j.issn.2095-2007.2019.02.002. MA Yan, DENG Guangda, MA Jing, et al. Clinical research of screening and analysis of refractive status in 481 infants at the age of 6 weeks[J]. Chin J Ophthalmol Med Electron Ed, 2019, 9(2): 71-76. doi:10.3877/cma.j.issn.2095-2007.2019.02.002. [10] AL Oum M, Donati S, Cerri L, et al. Ocular alignment and refraction in preterm children at 1 and 6 years old[J]. Clin Ophthalmol, 2014, 8: 1263-1268. doi:10.2147/OPTH.S59208. [11] 袁海琴, 陈妙虹, 赵金凤, 等. 早产儿视网膜病变自然消退儿童的屈光研究[J]. 山东大学耳鼻喉眼学报, 2019,33(4): 115-118. doi: 10.6040/j.issn.1673-3770.0.2019.010. YUAN Haiqin, CHEN Miaohong, ZHAO Jinfeng, et al. Refractive study of children with spontaneous regression of retinopathy of prematurity[J]. J Otolaryngol Ophthalmol Shandong Univ, 2019,33(4): 115-118. doi: 10.6040/j.issn.1673-3770.0.2019.010. [12] 郭佃强, 韩梅, 单若冰, 等. 多胎与单胎早产儿视网膜病变的发病率及危险因素的比较[J]. 眼科新进展, 2017,37(4): 348-350. doi:10.13389/j.cnki.rao.2017.0088. GUO Dianqiang, HAN Mei, SHAN Ruobing, et al. Incidence and risk factors of retinopathy of prematurity among the multiple and single gestation births[J]. Recent Adv Ophthalmol, 2017,37(4): 348-350. doi:10.13389/j.cnki.rao.2017.0088. [13] Rasoulinejad SA, Montazeri M. Retinopathy of prematurity in neonates and its risk factors: a seven year study in northern Iran[J]. Open Ophthalmol J, 2016, 10: 17-21. doi:10.2174/1874364101610010017. [14] Hur YM, Zheng YF, Huang WY, et al. Comparisons of refractive errors between twins and singletons in Chinese school-age samples[J]. Twin Res Hum Genet, 2009, 12(1): 86-92. doi:10.1375/twin.12.1.86. [15] Levy N, Shinwell ES, Leiba H. Long-term refractive status of preterm infants from singleton and multiple pregnancies[J]. J Matern Fetal Neonatal Med, 2017, 30(19): 2276-2280. doi:10.1080/14767058.2016.1245719. [16] 王燕, 陈雪艺. 正视眼屈光要素与年龄关系的研究进展[J]. 眼视光学杂志, 2007,9(3): 213-216. doi: 10.3760/cma.j.issn.1674-845X.2007.03.022. WANG Yan, CHEN Xueyi. Study in the relationship of emmetropic optical components and age[J]. Chin J Optom Ophthalmol, 2007,9(3): 213-216. doi: 10.3760/cma.j.issn.1674-845X.2007.03.022. [17] Snir M, Friling R, Weinberger D, et al. Refraction and keratometry in 40 week old premature(corrected age)and term infants[J]. Br J Ophthalmol, 2004, 88(7): 900-904. doi:10.1136/bjo.2003.037499. [18] Ouyang LJ, Yin ZQ, Ke N, et al. Refractive status and optical components of premature babies with or without retinopathy of prematurity at 3-4 years old[J]. Int J Clin Exp Med, 2015, 8(7): 11854-11861. [19] Rozema JJ, Herscovici Z, Snir M, et al. Analysing the ocular biometry of new-born infants[J]. Ophthalmic Physiol Opt, 2018, 38(2): 119-128. doi:10.1111/opo.12433. [20] Chen TC, Tsai TH, Shih YF, et al. Long-term evaluation of refractive status and optical components in eyes of children born prematurely[J]. Invest Ophthalmol Vis Sci, 2010, 51(12): 6140-6148. doi:10.1167/iovs.10-5234. [21] Hartnett ME, Toth CA. Experimental evidence behind clinical trial outcomes in retinopathy of prematurity[J]. Ophthalmic Surg Lasers Imaging Retina, 2019, 50(4): 228-234. doi:10.3928/23258160-20190401-05. [22] Favret S, Binet F, Lapalme E, et al. Deficiency in the metabolite receptor SUCNR1(GPR91)leads to outer retinal lesions[J]. Aging(Albany NY), 2013, 5(6): 427-444. doi:10.18632/aging.100563. [23] Etezad Razavi M, Shoeibi N, Hassanzadeh S, et al. Refractive outcome of intravitreal bevacizumab injection in comparison to spontaneous regression of retinopathy of prematurity(ROP)[J]. Strabismus, 2020, 28(1): 49-54. doi:10.1080/09273972.2019.1697302. [24] Meng QY, Cheng Y, Wu X, et al. Refractive error outcomes after intravitreal ranibizumab for retinopathy of prematurity[J]. Clin Exp Optom, 2020, 103(4): 495-500. doi:10.1111/cxo.13019. [25] Mintz-Hittner HA, Geloneck MM. Review of effects of anti-VEGF treatment on refractive error[J]. Eye Brain, 2016, 8: 135-140. doi:10.2147/EB.S99306. [26] Forooghian F, Kertes PJ, Eng KT, et al. Alterations in the intraocular cytokine milieu after intravitreal bevacizumab[J]. Invest Ophthalmol Vis Sci, 2010, 51(5): 2388-2392. doi:10.1167/iovs.09-4065. [27] Forooghian F, Kertes PJ, Eng KT, et al. Alterations in intraocular cytokine levels following intravitreal ranibizumab[J]. Can J Ophthalmol, 2016, 51(2): 87-90. doi:10.1016/j.jcjo.2015.11.001. [28] Wu H, Chen W, Zhao F, et al. Scleral hypoxia is a target for myopia control[J]. PNAS, 2018, 115(30): E7091-E7100. doi:10.1073/pnas.1721443115. [29] Wu PC, Tsai CL, Gordon GM, et al. Chondrogenesis in scleral stem/progenitor cells and its association with form-deprived myopia in mice[J]. Mol Vis, 2015, 21: 138-147. [30] Geloneck MM, Chuang AZ, Clark WL, et al. Refractive outcomes following bevacizumab monotherapy compared with conventional laser treatment: a randomized clinical trial[J]. JAMA Ophthalmol. 2014, 132(11): 1327-1333. doi:10.1001/jamaophthalmol.2014.2772. [31] Yang X, Chen C. Serum VEGF and Ang-2 Levels in Infants Before and After Laser Treatment for Retinopathy of Prematurity [J]. Fetal Pediatr Pathol. 2020. doi:10.1080/15513815.2020.1721625. [32] Hwang CK, Hubbard GB, Hutchinson AK, et al. Outcomes after intravitreal bevacizumab versus laser photocoagulation for retinopathy of prematurity: a 5-year retrospective analysis[J]. Ophthalmology, 2015, 122(5): 1008-1015. doi:10.1016/j.ophtha.2014.12.017. [33] Kuo HK, Sun IT, Chung MY, et al. Refractive error in patients with retinopathy of prematurity after laser photocoagulation or bevacizumab monotherapy[J]. Ophthalmologica, 2015, 234(4): 211-217. doi:10.1159/000439182. [34] Smith EL 3rd, Kee CS, Ramamirtham R, et al. Peripheral vision can influence eye growth and refractive development in infant monkeys[J]. Invest Ophthalmol Vis Sci, 2005, 46(11): 3965-3972. doi:10.1167/iovs.05-0445. [35] Smith EL, Hung LF, Huang J. Relative peripheral hyperopic defocus alters central refractive development in infant monkeys[J]. Vision Res, 2009, 49(19): 2386-2392. doi:10.1016/j.visres.2009.07.011. [36] Young-Zvandasara T, Popiela M, Preston H, et al. Is the severity of refractive error dependent on the quantity and extent of retinal laser ablation for retinopathy of prematurity?[J]. Eye, 2020, 34(4): 740-745. doi:10.1038/s41433-019-0605-x. [37] Dikopf MS, Machen LA, Hallak JA, et al. Zone of retinal vascularization and refractive error in premature eyes with and without spontaneously regressed retinopathy of prematurity[J]. j aapos, 2019, 23(4): 211.e1-211.e6. doi:10.1016/j.jaapos.2019.03.006. [38] Chen YC, Chen SN. Foveal microvasculature, refractive errors, optical biometry and their correlations in school-aged children with retinopathy of prematurity after intravitreal antivascular endothelial growth factors or laser photocoagulation[J]. Br J Ophthalmol, 2020, 104(5): 691-696. doi:10.1136/bjophthalmol-2019-314610. [39] 朱苾丹, 李绍军. 我国早产儿视网膜病变筛查及治疗现状[J]. 中国斜视与小儿眼科杂志, 2019,27(3): 44-47,32. doi: CNKI:SUN:ZGXS.0.2019-03-019. [40] Cerman E, Ozarslan Ozcan D, Celiker H, et al. Late clinical characteristics of infants with retinopathy of prematurity and treated with cryotherapy[J]. Int J Ophthalmol, 2016, 9(4): 567-571. doi:10.18240/ijo.2016.04.15. [41] Connolly BP, Ng EY, McNamara JA, et al. A comparison of laser photocoagulation with cryotherapy for threshold retinopathy of prematurity at 10 years: part 2. Refractive outcome[J]. Ophthalmology, 2002, 109(5): 936-941. doi:10.1016/s0161-6420(01)01015-6. [42] Moskowitz A, Hansen R, Fulton A. Early ametropia and rod photoreceptor function in retinopathy of prematurity[J]. Optom Vis Sci, 2005, 82(4): 307-317. doi:10.1097/01.opx.0000159367.23221.2d. [43] Molnar AEC, Andréasson SO, Larsson EKB, et al. Reduction of rod and cone function in 6.5-year-old children born extremely preterm[J]. JAMA Ophthalmol, 2017, 135(8): 854-861. doi:10.1001/jamaophthalmol.2017.2069. [44] Luu CD, Koh AH, Ling Y. The ON/OFF-response in retinopathy of prematurity subjects with myopia[J]. Doc Ophthalmol, 2005, 110(2/3): 155-161. doi:10.1007/s10633-005-3742-4. [45] Feldkaemper M, Schaeffel F. An updated view on the role of dopamine in myopia[J]. Exp Eye Res, 2013, 114: 106-119. doi:10.1016/j.exer.2013.02.007. [46] Thomson K, Karouta C, Ashby R. Topical application of dopaminergic compounds can inhibit deprivation myopia in chicks[J]. Exp Eye Res, 2020, 200: 108233. doi:10.1016/j.exer.2020.108233. [47] 杨晨皓. 早产儿视网膜病变自然退行者视功能发育研究[J]. 中国眼耳鼻喉科杂志, 2016,16(2): 107-110. doi:10.14166/j.issn.1671-2420.2016.02.011. YANG Chenhao. Research on visual function of preterm infants with spontaneous regression retinopathy of prematurity[J]. Chin J Ophthalmol Otorhinolaryngol, 2016,16(2): 107-110. doi:10.14166/j.issn.1671-2420.2016.02.011. [48] Davitt BV, Quinn GE, Wallace DK, et al. Astigmatism progression in the early treatment for retinopathy of prematurity study to 6 years of age[J]. Ophthalmology, 2011, 118(12): 2326-2329. doi:10.1016/j.ophtha.2011.06.006. [49] Cai B, Li Z, Sun S, et al. Novel mutations in the OPN1LW and NR2R3 genes in a patient with blue cone monochromacy[J]. Ophthalmic Genet, 2019, 40(1): 43-48. doi:10.1080/13816810.2018.1561902. [50] Meng B, Li SM, Yang Y, et al. The association of TGFB1 genetic polymorphisms with high myopia: a systematic review and meta-analysis[J]. Int J Clin Exp Med, 2015, 8(11): 20355-20367. [51] Liang Y, Song Y, Zhang F, et al. Effect of a single nucleotide polymorphism in the LAMA1 promoter region on transcriptional activity: implication for pathological myopia[J]. Curr Eye Res, 2016, 41(10): 1379-1386. doi:10.3109/02713683.2015.1118129. [52] Wang M, Yang ZK, Liu H, et al. Genipin inhibits the scleral expression of miR-29 and MMP2 and promotes COL1A1 expression in myopic eyes of Guinea pigs[J]. Graefes Arch Clin Exp Ophthalmol, 2020, 258(5): 1031-1038. doi:10.1007/s00417-020-04634-7. [53] Segal NL, Montoya YS, Peña FY, et al. Eye refraction in doubly exchanged monozygotic twins[J]. Twin Res Hum Genet, 2019, 22(3): 177-182. doi:10.1017/thg.2019.26. [54] Enthoven CA, Tideman JWL, Polling JR, et al. The impact of computer use on myopia development in childhood: The Generation R study[J]. Prev Med, 2020, 132: 105988. doi:10.1016/j.ypmed.2020.105988. |
[1] | 代诚李宾中. 多焦点软性角膜接触镜应用研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 100-105. |
[2] | 张陶然,王薇,李明铭,黄映湘. IVR治疗mCNV患者黄斑中心凹下脉络膜厚度分析[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 68-71. |
[3] | 彭娇,钟定娟,陈蛟,左筠,王华. 光学区直径与暗瞳直径的关系对不同程度近视患者SMILE术后视觉质量的影响[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 100-107. |
[4] | 李莹. 重视角膜屈光手术操作规范及并发症防治[J]. 山东大学耳鼻喉眼学报, 2021, 35(6): 1-6. |
[5] | 张颖,雷玉琳,马志兴,杨星花,张静,侯杰. SMILE联合快速角膜交联术后角膜光密度的早期临床观察[J]. 山东大学耳鼻喉眼学报, 2021, 35(6): 52-58. |
[6] | 刘艺,于明坤,孙伟,邵震,胡媛媛,毕宏生. 角膜塑形术控制儿童近视有效性与安全性的Meta分析[J]. 山东大学耳鼻喉眼学报, 2021, 35(6): 92-100. |
[7] | 陈金辉,黄婷,董洁,徐勇,韩继波,罗志宏,陶泽璋. 成人阻塞性睡眠呼吸暂停低通气综合征患者白天过度嗜睡临床特征及影响因素分析[J]. 山东大学耳鼻喉眼学报, 2021, 35(4): 22-29. |
[8] | 高朗, 陈红梅,白晔,秦雪娇. 手术时长与内眼手术围手术期血糖波动的相关分析[J]. 山东大学耳鼻喉眼学报, 2021, 35(4): 70-75. |
[9] | 岳鹏程,杜秋萱,孔玲,乔镇涛. 未矫正近视性屈光参差患者双眼间调节力对照研究[J]. 山东大学耳鼻喉眼学报, 2021, 35(4): 76-80. |
[10] | 刘凌张美霞. 近视的药物治疗[J]. 山东大学耳鼻喉眼学报, 2021, 35(4): 123-128. |
[11] | 肖西立,聂渝晓,陈婕. 国内近10年干眼相关研究——基于Citespace的可视化分析[J]. 山东大学耳鼻喉眼学报, 2021, 35(2): 86-97. |
[12] | 向浏岚,叶远航蒋璐云,刘洋. Tim-3在变应性鼻炎中的作用及机制研究进展[J]. 山东大学耳鼻喉眼学报, 2020, 34(6): 118-122. |
[13] | 任雨馨赵博军. 病理性近视脉络膜新生血管的诊断与治疗[J]. 山东大学耳鼻喉眼学报, 2020, 34(5): 157-162. |
[14] | 宋西成, 郑海涛. 甲状旁腺自荧光显影技术应用研究[J]. 山东大学耳鼻喉眼学报, 2020, 34(3): 19-25. |
[15] | 李莹,姜洋. 惟论近视矫正眼外与眼内手术方式的选择[J]. 山东大学耳鼻喉眼学报, 2020, 34(2): 1-6. |
|