山东大学耳鼻喉眼学报 ›› 2021, Vol. 35 ›› Issue (6): 52-58.doi: 10.6040/j.issn.1673-3770.0.2021.110
张颖,雷玉琳,马志兴,杨星花,张静,侯杰
ZHANG Ying, LEI Yulin, MA Zhixing, YANG Xinghua, ZHANG Jing, HOU Jie
摘要: 目的 观察飞秒激光小切口角膜基质透镜取出术联合快速角膜胶原交联术(SMILE Xtra)对角膜光密度的影响。 方法 收集2017年3月至2019年7月在济南明水眼科医院矫正近视及近视散光的患者78例,纳入右眼数据(78眼)进行分析,根据手术方式分为SMILE Xtra组和SMILE组,其中SMILE Xtra组39例(39眼),SMILE组39例(39眼),分别在术前和术后3个月对两组患者的角膜光密度值进行随访。应用Pentacam三维眼前节分析系统测量角膜光密度值,根据软件分析,以角膜顶点为中心,获取0~2 mm、2~6 mm及6~10 mm直径范围角膜光密度平均值,同时获取角膜前120 μm、中间基质层及后60 μm的光密度平均值。 结果 SMILE Xtra组和SMILE组在术后3个月时78眼(100%)UCVA均达到术前预期矫正视力。SMILE Xtra组术后整体角膜及角膜0~2 mm、2~6 mm直径范围的光密度值均较手术前显著增高,且变化有统计学意义(P<0.001)。逐层分析显示术后前120 μm的数值均显著高于中部及后部角膜。SMILE组术后角膜各个直径范围的光密度值与术前差异有统计学意义(P<0.05)。角膜中部角膜组织及后60 μm的光密度值在手术前后变化有统计学意义(P<0.05)。SMILE Xtra组手术后3个月角膜光密度在0~2 mm、3~6 mm、7~10 mm和前120 μm的数值均高于SMILE组,差异有统计学意义(P<0.05)。两组角膜光密度值的变化量与等效球镜度、角膜中央厚度、角膜曲率及角膜上皮厚度变化量均无明显相关性(P>0.05),与年龄呈负相关(r=-0.542, P=0.01)。 结论 SMILE Xtra组术后早期角膜光密度增加,透明度下降,但只在手术操作区域内发生变化。
中图分类号:
[1] Hafezi F, Kanellopoulos J, Wiltfang R, et al. Corneal collagen crosslinking with riboflavin and ultraviolet A to treat induced keratectasia after laser in situ keratomileusis[J]. J Cataract Refract Surg, 2007, 33(12): 2035-2040. doi:10.1016/j.jcrs.2007.07.028. [2] Hersh PS, Greenstein SA, Fry KL. Corneal collagen crosslinking for keratoconus and corneal ectasia: One-year results[J]. J Cataract Refract Surg, 2011, 37(1): 149-160. doi:10.1016/j.jcrs.2010.07.030. [3] Kanellopoulos AJ. Long-term safety and efficacy follow-up of prophylactic higher fluence collagen cross-linking in high myopic laser-assisted in situ keratomileusis[J]. Clin Ophthalmol, 2012, 6: 1125-1130. doi:10.2147/opth.s31256. [4] Kanellopoulos AJ. Collagen cross-linking in early keratoconus with riboflavin in a femtosecond laser-created pocket: initial clinical results[J]. J Refract Surg, 2009, 25(11): 1034-1037. doi:10.3928/1081597x-20090901-02. [5] 赵旸, 李杏莉, 文丹, 等. 中低度近视SMILE术后超早期视觉质量变化的研究[J]. 山东大学耳鼻喉眼学报, 2020, 34(2): 42-46. doi:10.6040/j.issn.1673-3770.1.2020.015. ZHAO Yang, LI Xingli, WEN Dan, et al. Changes in visual quality during the ultra-early stage of SMILE for middle and low myopia[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(2): 42-46. doi:10.6040/j.issn.1673-3770.1.2020.015. [6] Osman IM, Helaly HA, Abou Shousha M, et al. Corneal safety and stability in cases of small incision lenticule extraction with collagen cross-linking(SMILE xtra)[J]. J Ophthalmol, 2019, 2019: 6808062. doi:10.1155/2019/6808062. [7] Mazzotta C, Balestrazzi A, Baiocchi S, et al. Stromal haze after combined riboflavin-UVA corneal collagen cross-linking in keratoconus: in vivo confocal microscopic evaluation[J]. Clin Exp Ophthalmol, 2007, 35(6): 580-582. doi:10.1111/j.1442-9071.2007.01536.x. [8] Raiskup F, Hoyer A, Spoerl E. Permanent corneal haze after riboflavin-UVA-induced cross-linking in keratoconus[J]. J Refract Surg, 2009, 25(9): S824-S828. doi:10.3928/1081597X-20090813-12. [9] Wollensak G, Hammer T, Herrmann CIA. Haze Oder bandf rmige Keratopathie nach Crosslinking-Behandlung[J]. Der Ophthalmol, 2008, 105(9): 864-866. doi:10.1007/s00347-008-1831-y. [10] Greenstein SA, Fry KL, Bhatt J, et al. Natural history of corneal haze after collagen crosslinking for keratoconus and corneal ectasia: Scheimpflug and biomicroscopic analysis[J]. J Cataract Refract Surg, 2010, 36(12): 2105-2114. doi:10.1016/j.jcrs.2010.06.067. [11] Takacs AI, Mihaltz K, Nagy ZZ. Corneal density with the pentacam after photorefractive keratectomy[J]. J Refract Surg, 2011, 27(4): 269-277. doi:10.3928/1081597x-20100618-02. [12] Matsuda J, Hieda O, Kinoshita S. Quantification of corneal opacity after refractive corneal surgery using the anterior segment analyzer[J]. Nippon Ganka Gakkai Zasshi, 2007,111(6):447-453. [13] Shetty R, Agrawal A, Deshmukh R, et al. Effect of post crosslinking haze on the repeatability of Scheimpflug-based and slit-scanning imaging devices[J]. Indian J Ophthalmol, 2017, 65(4): 305-310. doi:10.4103/ijo.ijo_690_16. [14] Maurice DM. The structure and transparency of the cornea[J]. J Physiol, 1957, 136(2): 263-286. doi:10.1113/jphysiol.1957.sp005758. [15] 武志清, 王雁, 张琳, 等. 健康人眼角膜光密度分析及与眼内散射光的相关性研究[J]. 中华眼科杂志, 2014, 50(1): 20~26. doi:10.3760/cma.j.issn.0412-4081.2014.01.006. WU Zhiqing, WANG Yan, ZHANG Lin, et al. Distribution of corneal densitometry and its correlation with ocular straylight in healthy eyes[J]. Chinese Journal of Ophthalmology, 2014, 50(1): 20~26. doi:10.3760/cma.j.issn.0412-4081.2014.01.006. [16] Otri AM, Fares U, Al-Aqaba MA, et al. Corneal densitometry as an indicator of corneal health[J]. Ophthalmology, 2012, 119(3): 501-508. doi:10.1016/j.ophtha.2011.08.024. [17] Orucoglu F, Talaz S, Aksu A, et al. Corneal densitometry evaluation in archipelago keratitis[J]. Int Ophthalmol, 2014, 34(1): 99-102. doi:10.1007/s10792-013-9736-4. [18] Lopes B, Ramos I, Ambrósio R. Corneal densitometry in keratoconus[J]. Cornea, 2014, 33(12): 1282-1286. doi:10.1097/ICO.0000000000000266. [19] Akkaya Turhan S, Toker E. Changes in corneal density after accelerated corneal collagen cross-linking with different irradiation intensities and energy exposures: 1-year follow-up[J]. Cornea, 2017, 36(11): 1331-1335. doi:10.1097/ico.0000000000001362. [20] Cennamo G, Forte R, Aufiero B, et al. Computerized Scheimpflug densitometry as a measure of corneal optical density after excimer laser refractive surgery in myopic eyes[J]. J Cataract Refract Surg, 2011, 37(8): 1502-1506. doi:10.1016/j.jcrs.2011.03.037. [21] Pircher N, Pachala M, Prager F, et al. Changes in straylight and densitometry values after corneal collagen crosslinking[J]. J Cataract Refract Surg, 2015, 41(5): 1038-1043. doi:10.1016/j.jcrs.2014.07.043. [22] Kim BZ, Jordan CA, McGhee CNJ, et al. Natural history of corneal haze after corneal collagen crosslinking in keratoconus using Scheimpflug analysis[J]. J Cataract Refract Surg, 2016, 42(7): 1053-1059. doi:10.1016/j.jcrs.2016.04.019. [23] 袁倩, 刘蕾, 张亚丽, 等. SMILE和FS-LASIK对角膜光密度的影响[J]. 中华眼视光学与视觉科学杂志, 2018, 20(12): 719-724. doi:10.3760/cma.j.issn.1674-845X.2018.12.004. YUAN Qian, LIU Lei, ZHANG Yali, et al. Effect of SMILE and FS-LASIK on corneal densitometry after myopic correction[J]. Chinese Journal of Optometry Ophthalmology and Visual Science, 2018, 20(12): 719-724. doi:10.3760/cma.j.issn.1674-845X.2018.12.004. [24] Kamaev P, Friedman MD, Sherr E, et al. Photochemical kinetics of corneal cross-linking with riboflavin[J]. Investig Ophthalmol Vis Sci, 2012, 53(4): 2360-2367. doi:10.1167/iovs.11-9385. [25] Ní Dhubhghaill S, Rozema JJ, Jongenelen S, et al. Normative values for corneal densitometry analysis by Scheimpflug optical assessment[J]. Invest Ophthalmol Vis Sci, 2014, 55(1): 162-168. doi:10.1167/iovs.13-13236. [26] Cankaya AB, Tekin K, Kiziltoprak H, et al. Assessment of corneal backward light scattering in the healthy cornea and factors affecting corneal transparency[J]. Jpn J Ophthalmol, 2018, 62(3): 335-341. doi:10.1007/s10384-018-0584-7. |
[1] | 王旭,高芯,张玉光. 加速型角膜胶原交联术治疗真菌性角膜炎的临床研究[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 51-57. |
[2] | 代诚李宾中. 多焦点软性角膜接触镜应用研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 100-105. |
[3] | 张陶然,王薇,李明铭,黄映湘. IVR治疗mCNV患者黄斑中心凹下脉络膜厚度分析[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 68-71. |
[4] | 彭娇,钟定娟,陈蛟,左筠,王华. 光学区直径与暗瞳直径的关系对不同程度近视患者SMILE术后视觉质量的影响[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 100-107. |
[5] | 李莹. 重视角膜屈光手术操作规范及并发症防治[J]. 山东大学耳鼻喉眼学报, 2021, 35(6): 1-6. |
[6] | 王力翔,李莹,邓应平. 全飞秒角膜基质透镜在远视屈光矫正手术中的应用[J]. 山东大学耳鼻喉眼学报, 2021, 35(6): 7-12. |
[7] | 陈涛,李耀宇,杨马君,闫洪欣,刘光溢,翟长斌. SMILE术中主动脱吸的合理运用和被动脱吸的原因分析及处理[J]. 山东大学耳鼻喉眼学报, 2021, 35(6): 20-24. |
[8] | 刘艺,于明坤,孙伟,邵震,胡媛媛,毕宏生. 角膜塑形术控制儿童近视有效性与安全性的Meta分析[J]. 山东大学耳鼻喉眼学报, 2021, 35(6): 92-100. |
[9] | 冉宏运,蒋可可,张杰. 早产儿视网膜病变患儿屈光影响因素研究进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(5): 118-124. |
[10] | 岳鹏程,杜秋萱,孔玲,乔镇涛. 未矫正近视性屈光参差患者双眼间调节力对照研究[J]. 山东大学耳鼻喉眼学报, 2021, 35(4): 76-80. |
[11] | 刘凌,张美霞. 近视的药物治疗[J]. 山东大学耳鼻喉眼学报, 2021, 35(4): 123-128. |
[12] | 任雨馨赵博军. 病理性近视脉络膜新生血管的诊断与治疗[J]. 山东大学耳鼻喉眼学报, 2020, 34(5): 157-162. |
[13] | 李莹,姜洋. 惟论近视矫正眼外与眼内手术方式的选择[J]. 山东大学耳鼻喉眼学报, 2020, 34(2): 1-6. |
[14] | 苏才培,杨亚波. 飞秒激光小切口角膜基质透镜取出术操作要点及并发症的预防和处理[J]. 山东大学耳鼻喉眼学报, 2020, 34(2): 13-16. |
[15] | 张晶,陶冶,李福生,王燊,曲冬懿,李莹,周跃华. OCT导航的飞秒激光制作角膜瓣的优势分析[J]. 山东大学耳鼻喉眼学报, 2020, 34(2): 17-21. |
|