山东大学耳鼻喉眼学报 ›› 2024, Vol. 38 ›› Issue (4): 159-165.doi: 10.6040/j.issn.1673-3770.0.2023.077

• 综述 • 上一篇    

睑板腺功能障碍实验模型及应用现状

毕赵静1,2,李元彬2   

  1. 1. 潍坊医学院 临床医学院, 山东 潍坊 261053;
    2. 青岛大学附属烟台毓璜顶医院 眼科, 山东 烟台 264000
  • 发布日期:2024-07-09
  • 通讯作者: 李元彬. E-mail:yuanbinli@yeah.net

Current status of experimental models and applications of meibomian gland dysfunction

BI Zhaojing1,2, LI Yuanbin2   

  1. 1. School of Clinical Medicine, Weifang Medical University, Weifang 261053, Shandong, China2. Department of Ophthalmology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, China
  • Published:2024-07-09

摘要: 睑板腺功能障碍(meibomian gland dysfunction, MGD)是临床常见的眼表疾病,严重影响患者的日常生活质量。目前 MGD发病机制与治疗手段的相关研究已逐渐成为干眼的研究热点,为此建立一个稳定有效的实验模型对于MGD的深入探索是必要的前提。MGD实验模型目前主要分为在体模型和离体模型两大类:在体模型主要通过药物诱导、手术诱导、基因敲除以及转基因方式建模;离体模型是指在体外模拟睑板腺的病理生理。本文就目前报道的多种MGD实验模型及对其应用评价进行简要综述。

关键词: 睑板腺功能障碍, 干眼, 睑板腺上皮细胞, 睑板腺外植体, 动物模型

Abstract: Meibomian gland dysfunction(MGD)is a common ocular surface disease in clinics that seriously affects the quality of patients' daily life. To date, related research on the pathogenesis and treatment of MGD has gradually become a research hotspot in dry eye. Therefore, the establishment of a stable and effective experimental model is a prerequisite for further exploration of MGD. The experimental models of MGD are divided into two categories: in vivo and in vitro models. The in vivo model is modeled mainly by drug induction, surgical induction, gene knockout, and transgenic methods. The in vitro model is used to simulate the pathophysiology of meibomian glands in vitro. This paper briefly reviews several MGD experimental models reported so far and their evaluation.

Key words: Meibomian gland dysfunction, Dry eye, iHMGEC, Meibomian gland explant, Animal models

中图分类号: 

  • R777.1
[1] 亚洲干眼协会中国分会, 海峡两岸医药卫生交流协会眼科学专业委员会眼表与泪液病学组, 中国医师协会眼科医师分会眼表与干眼学组, 等. 中国睑板腺功能障碍专家共识: 定义和分类(2023年)[J]. 中华眼科杂志, 2023(4): 256-261. doi:10.3760/cma.j.cn11242-20230114-00023
[2] Yerramothu P, Vijay AK, Willcox MDP. Inflammasomes, the eye and anti-inflammasome therapy[J]. Eye, 2018, 32(3): 491-505. doi:10.1038/eye.2017.241
[3] Hassanzadeh S, Varmaghani M, Zarei-Ghanavati S, et al. Global prevalence of meibomian gland dysfunction: a systematic review and meta-analysis[J]. Ocul Immunol Inflamm, 2021, 29(1): 66-75. doi:10.1080/09273948.2020.1755441
[4] 亚洲干眼协会中国分会, 海峡两岸医药卫生交流协会眼科学专业委员会眼表与泪液病学组, 中国医师协会眼科医师分会眼表与干眼学组. 中国干眼专家共识:免疫性疾病相关性干眼(2021年)[J]. 中华眼科杂志, 2021, 57(12): 898-907. doi:10.3760/cma.j.cn112142-20210929-00466
[5] Dell SJ, Gaster RN, Barbarino SC, et al. Prospective evaluation of intense pulsed light and meibomian gland expression efficacy on relieving signs and symptoms of dry eye disease due to meibomian gland dysfunction[J]. Clin Ophthalmol, 2017,11:817-827
[6] Baudouin C, Messmer??倓EM, Aragona P, et al. Revisiting the vicious circle of dry eye disease: a focus on the pathophysiology of meibomian gland dysfunction[J]. Br J Ophthalmol, 2016, 100(3): 300-306. doi:10.1136/bjophthalmol-2015-307415
[7] Bron AJ, de Paiva CS, Chauhan SK, et al. TFOS DEWS II pathophysiology report[J]. Ocul Surf, 2017, 15(3): 438-510. doi:10.1016/j.jtos.2017.05.011
[8] Li H, Li JF, Hou CT, et al. The effect of astaxanthin on inflammation in hyperosmolarity of experimental dry eye model in vitro and in vivo[J]. Exp Eye Res, 2020, 197: 108113. doi:10.1016/j.exer.2020.108113
[9] 肖西立, 聂渝晓, 陈婕. 国内近10年干眼相关研究: 基于Citespace的可视化分析[J]. 山东大学耳鼻喉眼学报, 2021, 35(2): 86-97. doi:10.6040/j.issn.1673-3770.0.2020.271 XIAO Xili, NIE Yuxiao, CHEN Jie. Visual analysis of domestic studies on dry eye syndrome in the past ten years using Citespace[J]. Journal of Otolaryngology and Ophthalmology of Shangdong University2021, 35(2): 86-97. doi:10.6040/j.issn.1673-3770.0.2020.271
[10] Dietrich J, Garreis F, Paulsen F. Pathophysiology of meibomian glands-an overview[J]. Ocul Immunol Inflamm, 2021, 29(4): 803-810. doi:10.1080/09273948.2021.1905856
[11] Liu SH, Hatton MP, Khandelwal P, et al. Culture, immortalization, and characterization of human meibomian gland epithelial cells[J]. Invest Ophthalmol Vis Sci, 2010, 51(8): 3993-4005. doi:10.1167/iovs.09-5108
[12] Ziemanski JF, Chen JZ, Nichols KK. Evaluation of cell harvesting techniques to optimize lipidomic analysis from human meibomian gland epithelial cells in culture[J]. Int J Mol Sci, 2020, 21(9): 3277. doi:10.3390/ijms21093277
[13] Liu Y, Kam WR, Sullivan DA. Influence of Omega 3 and 6 fatty acids on human meibomian gland epithelial cells[J]. Cornea, 2016, 35(8): 1122-1126. doi:10.1097/ICO.0000000000000874
[14] Liu SH, Kam WR, Ding J, et al. Effect of growth factors on the proliferation and gene expression of human meibomian gland epithelial cells[J]. Invest Ophthalmol Vis Sci, 2013, 54(4): 2541-2550. doi:10.1167/iovs.12-11221
[15] Han X, Liu Y, Kam WR, et al. Effect of brimonidine, an α2 adrenergic agonist, on human meibomian gland epithelial cells[J]. Exp Eye Res, 2018, 170: 20-28. doi:10.1016/j.exer.2018.02.009
[16] Kim SW, Xie YL, Nguyen PQ, et al. PPARγ regulates meibocyte differentiation and lipid synthesis of cultured human meibomian gland epithelial cells(hMGEC)[J]. Ocul Surf, 2018, 16(4): 463-469. doi:10.1016/j.jtos.2018.07.004
[17] Kim SW, Brown DJ, Jester JV. Transcriptome analysis after PPARγ activation in human meibomian gland epithelial cells(hMGEC)[J]. Ocul Surf, 2019, 17(4): 809-816. doi:10.1016/j.jtos.2019.02.003
[18] Liu Y, Wang JY, Chen D, et al. The role of hypoxia-inducible factor 1α in the regulation of human meibomian gland epithelial cells[J]. Invest Ophthalmol Vis Sci, 2020, 61(3): 1. doi:10.1167/iovs.61.3.1
[19] Liu Y, Ding J. The combined effect of azithromycin and insulin-like growth factor-1 on cultured human meibomian gland epithelial cells[J]. Invest Ophthalmol Vis Sci, 2014, 55(9): 5596-5601. doi:10.1167/iovs.14-14782
[20] Ziemanski JF, Wilson L, Barnes S, et al. Saturation of cholesteryl esters produced by human meibomian gland epithelial cells after treatment with rosiglitazone[J]. Ocul Surf, 2021, 20: 39-47. doi:10.1016/j.jtos.2020.11.011
[21] Ziemanski JF, Wilson L, Barnes S, et al. Triacylglycerol lipidome from human meibomian gland epithelial cells: description, response to culture conditions, and perspective on function[J]. Exp Eye Res, 2021, 207: 108573. doi:10.1016/j.exer.2021.108573
[22] Nuwormegbe S, Park NY, Park HJ, et al. Induction of meibocyte differentiation by three-dimensional, matrigel culture of immortalized human meibomian gland epithelial cells to form acinar organoids[J]. Ocul Surf, 2022, 26: 271-282. doi:10.1016/j.jtos.2022.10.004
[23] Yeotikar NS, Zhu H, Markoulli M, et al. Functional and morphologic changes of meibomian glands in an asymptomatic adult population[J]. Invest Ophthalmol Vis Sci, 2016, 57(10): 3996-4007. doi:10.1167/iovs.15-18467
[24] Xu KK, Huang YK, Liu X, et al. Organotypic culture of mouse meibomian gland: a novel model to study meibomian gland dysfunction in vitro[J]. Invest Ophthalmol Vis Sci, 2020, 61(4): 30. doi:10.1167/iovs.61.4.30
[25] Chen H, Gao H, Xie HT, et al. Hyperkeratinization and proinflammatory cytokine expression in meibomian glands induced by Staphylococcus aureus[J]. Invest Ophthalmol Vis Sci, 2021, 62(13): 11. doi:10.1167/iovs.62.13.11
[26] Knop E, Knop N, Millar T, et al. The international workshop on meibomian gland dysfunction: report of the subcommittee on anatomy, physiology, and pathophysiology of the meibomian gland[J]. Invest Ophthalmol Vis Sci, 2011, 52(4): 1938-1978. doi:10.1167/iovs.10-6997c
[27] Ding J, Kam WR, Dieckow J, et al. The influence of 13-cis retinoic acid on human meibomian gland epithelial cells[J]. Invest Ophthalmol Vis Sci, 2013, 54(6): 4341-4350. doi:10.1167/iovs.13-11863
[28] 狄宇, 李莹. 干眼炎症反应机制及抗炎治疗的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 144-150. doi: 10.6040/j.issn.1673-3770.0.2020.484 DI Yu, LI Ying. Research progress in the inflammatory reaction and anti-inflammatory treatments in dry eye[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 144-150. doi: 10.6040/j.issn.1673-3770.0.2020.484
[29] Nast A, Dréno B, Bettoli V, et al. European evidence-based(S3)guideline for the treatment of acne-update 2016 - short version[J]. J Eur Acad Dermatol Venereol, 2016, 30(8): 1261-1268. doi:10.1111/jdv.13776
[30] Ibrahim MAA, Elwan WM. Role of topical dehydroepiandrosterone in ameliorating isotretinoin-induced Meibomian gland dysfunction in adult male albino rat[J]. Ann Anat, 2017, 211: 78-87. doi:10.1016/j.aanat.2017.01.007
[31] Karadag R, Karadag AS, Ozlu E, et al. Effects of different doses of systemic isotretinoin on eyes: a histopathological and immunohistochemical study in rats[J]. Cornea, 2020, 39(5): 621-627. doi:10.1097/ICO.0000000000002229
[32] Zhang P, Tian L, Bao JY, et al. Isotretinoin impairs the secretory function of meibomian gland via the PPARγ signaling pathway[J]. Invest Ophthalmol Vis Sci, 2022, 63(3): 29. doi:10.1167/iovs.63.3.29
[33] Reyes NJ, Mathew R, Saban DR. Induction and characterization of the allergic eye disease mouse model[J]. Methods Mol Biol, 2018, 1799: 49-57. doi:10.1007/978-1-4939-7896-0_5
[34] Singh PP, Yu C, Mathew R, et al. Meibomian gland dysfunction is suppressed via selective inhibition of immune responses by topical LFA-1/ICAM antagonism with lifitegrast in the allergic eye disease(AED)model[J]. Ocul Surf, 2021, 21: 271-278. doi:10.1016/j.jtos.2021.03.009
[35] Qin RS, Tong Hak Tien L. Healthcare delivery in meibomian gland dysfunction and blepharitis[J]. Ocul Surf, 2019, 17(2): 176-178. doi:10.1016/j.jtos.2018.11.007
[36] Miyake H, Oda T, Katsuta O, et al. A novel model of meibomian gland dysfunction induced with complete freund’s adjuvant in rabbits[J]. Vision, 2017, 1(1): 10. doi:10.3390/vision1010010
[37] Lu Y, Yin Y, Gong L. Meibomian gland dysfunction model induced with complete Freund's adjuvant in C57BL/6 mice[J]. Int J Ophthalmol, 2020, 13(11): 1705-1712. doi:10.18240/ijo.2020.11.04
[38] Lin XL, Xu BB, Zheng YX, et al. Meibomian gland dysfunction in type 2 diabetic patients[J]. J Ophthalmol, 2017, 2017: 3047867. doi:10.1155/2017/3047867
[39] Wu HP, Fang X, Luo SR, et al. Meibomian glands and tear film findings in type 2 diabetic patients: a cross-sectional study[J]. Front Med, 2022, 9: 762493. doi:10.3389/fmed.2022.762493
[40] Ding J, Liu Y, Sullivan DA. Effects of insulin and high glucose on human meibomian gland epithelial cells[J]. Invest Ophthalmol Vis Sci, 2015, 56(13): 7814-7820. doi:10.1167/iovs.15-18049
[41] Guo YL, Zhang HJ, Zhao ZY, et al. Hyperglycemia induces meibomian gland dysfunction[J]. Invest Ophthalmol Vis Sci, 2022, 63(1): 30. doi:10.1167/iovs.63.1.30
[42] Eom Y, Han JY, Kang B, et al. Meibomian glands and ocular surface changes after closure of meibomian gland orifices in rabbits[J]. Cornea, 2018, 37(2): 218-226. doi:10.1097/ICO.0000000000001460
[43] Butovich IA, Lu H, McMahon A, et al. Toward an animal model of the human tear film: biochemical comparison of the mouse, canine, rabbit, and human meibomian lipidomes[J]. Invest Ophthalmol Vis Sci, 2012, 53(11): 6881-6896. doi:10.1167/iovs.12-10516
[44] Dong ZY, Ying M, Zheng J, et al. Evaluation of a rat meibomian gland dysfunction model induced by closure of meibomian gland orifices[J]. Int J Ophthalmol, 2018, 11(7): 1077-1083. doi:10.18240/ijo.2018.07.01
[45] Bu JH, Wu Y, Cai XX, et al. Hyperlipidemia induces meibomian gland dysfunction[J]. Ocul Surf, 2019, 17(4): 777-786. doi:10.1016/j.jtos.2019.06.002
[46] Reneker LW, Wang LL, Irlmeier RT, et al. Fibroblast growth factor receptor 2(FGFR2)is required for meibomian gland homeostasis in the adult mouse[J]. Invest Ophthalmol Vis Sci, 2017, 58(5): 2638-2646. doi:10.1167/iovs.16-21204
[47] Yang XW, Zhong XW, Huang AJ, et al. Spontaneous acinar and ductal regrowth after meibomian gland atrophy induced by deletion of FGFR2 in a mouse model[J]. Ocul Surf, 2022, 26: 300-309. doi:10.1016/j.jtos.2021.11.005
[48] Ibrahim OM, Dogru M, Matsumoto Y, et al. Oxidative stress induced age dependent meibomian gland dysfunction in Cu, Zn-superoxide dismutase-1(Sod1)knockout mice[J]. PLoS One, 2014, 9(7): e99328. doi:10.1371/journal.pone.0099328
[49] Ikeda K, Simsek C, Kojima T, et al. The effects of 3% diquafosol sodium eye drop application on meibomian gland and ocular surface alterations in the Cu, Zn-superoxide dismutase-1(Sod1)knockout mice[J]. Albrecht Von Graefes Arch Fur Klin Und Exp Ophthalmol, 2018, 256(4): 739-750. doi:10.1007/s00417-018-3932-x
[50] Widjaja-Adhi MAK, Silvaroli JA, Chelstowska S, et al. Deficiency in Acyl-CoA: wax alcohol acyltransferase 2 causes evaporative dry eye disease by abolishing biosynthesis of wax esters[J]. FASEB J, 2020, 34(10): 13792-13808. doi:10.1096/fj.202001191R
[1] 叶强,洛松巴宗,南苏亭,王浩,马进海,律鹏,张文芳. 色素上皮衍生因子与干眼的研究进展[J]. 山东大学耳鼻喉眼学报, 2024, 38(3): 151-156.
[2] 王佳慧,刘学勤. 全球近10年干眼相关生活质量研究——基于VOSviewer和CiteSpace的文献计量学及可视化分析[J]. 山东大学耳鼻喉眼学报, 2024, 38(2): 61-72.
[3] 段练,孟凡兰,党光福. 干眼对屈光性白内障手术的影响[J]. 山东大学耳鼻喉眼学报, 2022, 36(6): 1-6.
[4] 李彦松综述朱玉广审校. 泪膜稳定性对超声乳化术后视觉质量影响的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(6): 19-25.
[5] 白伶伶,王红星,王立春. 可吸收泪小管塞栓联合人工泪液治疗中重度干眼的有效性及对视觉相关生存质量的影响[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 78-82.
[6] 狄宇,李莹. 干眼炎症反应机制及抗炎治疗的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 144-150.
[7] 黄天泽,陈迪,李莹. 机器学习在眼表疾病诊断及角膜手术中的应用进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(6): 13-19.
[8] 闫语,曾澳,何宇茜. 感染性角膜炎的模型制备[J]. 山东大学耳鼻喉眼学报, 2021, 35(5): 125-131.
[9] 肖西立,聂渝晓,陈婕. 国内近10年干眼相关研究——基于Citespace的可视化分析[J]. 山东大学耳鼻喉眼学报, 2021, 35(2): 86-97.
[10] 李威,张斌. 优化脉冲光联合睑板腺按摩治疗睑板腺功能障碍的临床效果观察[J]. 山东大学耳鼻喉眼学报, 2021, 35(2): 105-109.
[11] 孙子雯,崔洪玮,孙喜灵,陈晨,张璐,胡竹林. 干眼病的病因、发病机制及治疗进展[J]. 山东大学耳鼻喉眼学报, 2019, 33(2): 159-166.
[12] 涂雪峰. 重组牛碱性成纤维细胞生长因子联合玻璃酸钠治疗干眼症的疗效分析[J]. 山东大学耳鼻喉眼学报, 2018, 32(6): 84-87.
[13] 阳雪,李莹. 干眼对角膜内皮细胞的影响及相关因素分析[J]. 山东大学耳鼻喉眼学报, 2018, 32(4): 72-76.
[14] 李上,张薇,卢红双,臧云晓,董宏伟,郭纯刚,潘志强,接英. 热脉动系统对轻、中度睑板腺功能障碍治疗的临床观察[J]. 山东大学耳鼻喉眼学报, 2018, 32(3): 91-95.
[15] 胡锦东,刘新泉. 干眼动物模型研究进展[J]. 山东大学耳鼻喉眼学报, 2017, 31(4): 109-113.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!