山东大学耳鼻喉眼学报 ›› 2025, Vol. 39 ›› Issue (3): 104-114.doi: 10.6040/j.issn.1673-3770.0.2024.011
• 论著 • 上一篇
张丽霞,李琳
ZHANG Lixia, LI Lin
摘要: 目的 应用生物信息学方法筛选年龄相关性听力损失的关键基因,探讨为年龄相关性听力损失的临床诊断和治疗提供新理论依据。 方法 从GEO数据库中获取与年龄相关性听力损失相关的两个数据集,通过GEO2R工具分析差异表达基因;利用DAVID在线软件对差异表达基因进行功能富集分析;利用STRING数据库和Cytoscape软件构建蛋白互作网络图;利用 Cytoscape软件中的CytoHubba插件筛选出关键基因,最后在动物模型中加以验证。 结果 从GSE127204和GSE196870数据集中选出100个共有差异基因(differentially expressed genes, DEGs);GO(gene ontology, GO)和KEGG(kyoto encyclopedia of genes and genome, KEGG)富集分析发现差异表达基因主要富集在细胞因子-细胞因子受体相互作用等通路;利用Cytoscape软件筛选出关键基因,包括IRF7、PTPRC、CXCL10、IFI44、IFI204、USP18和CD4 。在此基础上通过RT-qRCR检测小鼠耳蜗组织中7个关键基因的表达,进一步验证以上7个基因在年龄相关性耳聋中均为高表达。 结论 本研究利用生物信息学筛选结合RT-qRCR检测小鼠耳蜗组织等实验结果,证实在年龄相关性听力损失中7个关键基因表达显著升高。该研究为年龄相关性听力损失的前期诊断和临床治疗提供新思路和理论依据。
中图分类号:
| [1] Hu SY, Sun QR, Xu F, et al. Age-related hearing loss and its potential drug candidates: a systematic review[J]. Chin Med, 2023, 18(1): 121. doi:10.1186/s13020-023-00825-6 [2] Lahlou G, Calvet C, Giorgi M, et al. Towards the clinical application of gene therapy for genetic inner ear diseases[J]. J Clin Med, 2023, 12(3): 1046. doi:10.3390/jcm12031046 [3] Shende SA, Mudar RA. Cognitive control in age-related hearing loss: a narrative review[J]. Hear Res, 2023, 436: 108814. doi:10.1016/j.heares.2023.108814 [4] Yang W, Zhao XL, Chai RJ, et al. Progress on mechanisms of age-related hearing loss[J]. Front Neurosci, 2023, 17: 1253574. doi:10.3389/fnins.2023.1253574 [5] Keithley EM. Pathology and mechanisms of cochlear aging[J]. J Neurosci Res, 2020, 98(9): 1674-1684. doi:10.1002/jnr.24439 [6] Lang HN, Noble KV, Barth JL, et al. The stria vascularis in mice and humans is an early site of age-related cochlear degeneration, macrophage dysfunction, and inflammation[J]. J Neurosci, 2023, 43(27): 5057-5075. doi:10.1523/JNEUROSCI.2234-22.2023 [7] Liu JL, Chen HY, Lin XY, et al. Melatonin suppresses cyclic GMP-AMP synthase-Stimulator of interferon genes signaling and delays the development of hearing loss in the C57BL/6J presbycusis mouse model[J]. Neuroscience, 2023, 517: 84-95. doi:10.1016/j.neuroscience.2023.01.015 [8] Druszczynska M, Godkowicz M, Kulesza J, et al. Cytokine receptors-regulators of antimycobacterial immune response [J]. Int J Mol Sci, 2022, 23(3):1112. doi: 10.3390/ijms23031112 [9] Uraguchi K, Maeda Y, Takahara J, et al. Upregulation of a nuclear factor-kappa B-interacting immune gene network in mice cochleae with age-related hearing loss[J]. PLoS One, 2021, 16(10): e0258977. doi:10.1371/journal.pone.0258977 [10] Yang CH, Hwang CF, Chuang JH, et al. Systemic toll-like receptor 9 agonist CpG oligodeoxynucleotides exacerbates aminoglycoside ototoxicity[J]. Hear Res, 2021, 411: 108368. doi:10.1016/j.heares.2021.108368 [11] Al Barashdi MA, Ali A, McMullin MF, et al. Protein tyrosine phosphatase receptor type C(PTPRC or CD45)[J]. J Clin Pathol, 2021, 74(9): 548-552. doi:10.1136/jclinpath-2020-206927 [12] Tornabene SV, Sato K, Pham L, et al. Immune cell recruitment following acoustic trauma[J]. Hear Res, 2006, 222(1/2): 115-124. doi:10.1016/j.heares.2006.09.004 [13] Singh G, Gaidhane A. A review of sensorineural hearing loss in congenital cytomegalovirus infection[J]. Cureus, 2022, 14(10): e30703. doi:10.7759/cureus.30703 [14] Kve tak D, Jurani Lisni V, Lisni B, et al. NK/ILC1 cells mediate neuroinflammation and brain pathology following congenital CMV infection[J]. J Exp Med, 2021, 218(5): e20201503. doi:10.1084/jem.20201503 [15] Maeda Y, Kariya S, Omichi R, et al. Targeted PCR array analysis of genes in innate immunity and glucocorticoid signaling pathways in mice cochleae following acoustic trauma [J]. Otol Neurotol, 2018, 39(7): 593-600. doi: 10.1097/MAO.0000000000001874 [16] Wang Y, Ma CF, Ma ZB, et al. Identification and clinical correlation analysis of IFI44 in systemic lupus erythematosus combined with bioinformatics and immune infiltration analysis[J]. J Inflamm Res, 2023, 16: 3219-3231. doi:10.2147/JIR.S419880 [17] Baran M, Feriotti C, McGinley A, et al. PYHIN protein IFI207 regulates cytokine transcription and IRF7 and contributes to the establishment of K.pneumoniae infection[J]. Cell Rep, 2023, 42(4): 112341. doi:10.1016/j.celrep.2023.112341 [18] Lee EJ, Kim JY, Yeo JH, et al. ISG15-USP18 dysregulation by oxidative stress promotes IFN-γ secretion from CD8+T Cells in vitiligo[J]. J Invest Dermatol, 2024, 144(2): 273-283. doi:10.1016/j.jid.2023.08.006 [19] Iwai H, Inaba M, van Bui D, et al. Treg and IL-1 receptor type 2-expressing CD4+ T cell-deleted CD4+ T cell fraction prevents the progression of age-related hearing loss in a mouse model[J]. J Neuroimmunol, 2021, 357: 577628. doi:10.1016/j.jneuroim.2021.577628 |
| [1] | 杨旻,朱晓燕,王旭. 感音神经性聋的代谢组学研究进展[J]. 山东大学耳鼻喉眼学报, 2024, 38(2): 113-121. |
| [2] | 张艳红, 李娟娟, 曾宪海, 缑灵山, 王朝霞, 魏建芳, 马芳, 邱书奇. 耳聋基因panel在耳聋基因诊断中的临床应用[J]. 山东大学耳鼻喉眼学报, 2022, 36(4): 27-34. |
| [3] | 孙凯丽,吴晓媛,别旭,孙秀珍. 人工耳蜗植入术治疗大前庭水管综合征16例临床分析[J]. 山东大学耳鼻喉眼学报, 2019, 33(5): 48-51. |
| [4] | 叶毅良,卢标清. 704例突发性耳聋疗效分析[J]. 山东大学耳鼻喉眼学报, 2019, 33(5): 44-47. |
| [5] | 姚青秀,王会,李壮壮,于栋祯,殷善开. 耳蜗肌球蛋白VI相互作用蛋白筛选的初步研究[J]. 山东大学耳鼻喉眼学报, 2019, 33(5): 40-43. |
| [6] | 张俊军,刘海莉,刘加福,秦小奉,杜洪明,王厚慧. 糖皮质激素不同给药方式治疗突发性聋的临床疗效及安全性研究[J]. 山东大学耳鼻喉眼学报, 2019, 33(4): 52-55. |
| [7] | 童巧珍,赵艳,程四华. 突发性聋患者负性情绪知信行模式构建及应用效果[J]. 山东大学耳鼻喉眼学报, 2019, 33(4): 162-164. |
| [8] | 钟晓声,杨海弟,郑亿庆. 突发性聋伴耳鸣的治疗与转归[J]. 山东大学耳鼻喉眼学报, 2019, 33(4): 43-46. |
| [9] | 钱方舟,黄啸博,魏钦俊,陈智斌. 致聋基因 EYA4 在斑马鱼胚胎发育中的时空表达特征分析[J]. 山东大学耳鼻喉眼学报, 2019, 33(3): 49-55. |
| [10] | 卜行宽. WHO全球防聋计划和我国的响应与作用[J]. 山东大学耳鼻喉眼学报, 2019, 33(3): 3-8. |
| [11] | 许明,罗兴谷,唐洪波,江青山. 儿童突发性聋的临床特征及预后相关因素分析[J]. 山东大学耳鼻喉眼学报, 2018, 32(5): 41-44. |
| [12] | 陈伟,胡中南,童钊君,李湘宇,刘文君. 青中年无眩晕、心脑血管疾病病史的突发性聋患者高刺激率听性脑干反应特征分析[J]. 山东大学耳鼻喉眼学报, 2018, 32(5): 45-49. |
| [13] | 朱文燕,金新,佘万东,马永驰. 突发性聋30例精神心理状况分析[J]. 山东大学耳鼻喉眼学报, 2018, 32(5): 50-52. |
| [14] | 黄芳,郑智娟,谢磊. 突发性聋患者焦虑、抑郁与病情阶段的关系及影响因素分析[J]. 山东大学耳鼻喉眼学报, 2018, 32(4): 1-6. |
| [15] | 宋峰,甘彬,许安廷,王坚. 长时程低强度噪声暴露对豚鼠内毛细胞带状突触的影响分析[J]. 山东大学耳鼻喉眼学报, 2017, 31(5): 41-44. |
|
||