山东大学耳鼻喉眼学报 ›› 2019, Vol. 33 ›› Issue (4): 131-137.doi: 10.6040/j.issn.1673-3770.0.2018.446

• 荟萃分析 • 上一篇    下一篇

CPAP治疗对阻塞性睡眠呼吸暂停综合征患者血清炎症标志物影响的Meta分析

陈淳1,丁健1,谢晋2   

  1. 1.上海交通大学附属第一人民医院耳鼻咽喉头颈外科, 上海 200080;
    2.上海交通大学医学院附属新华医院耳鼻咽喉头颈外科, 上海 200093
  • 出版日期:2019-07-20 发布日期:2019-07-22

Effects of continuous positive airway pressure therapy on inflammatory markers in obstructive sleep apnea syndrome: a meta-analysis

CHEN Chun1, DING Jian1, XIE Jin2   

  1. Department of Otolaryngology & Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University, Shanghai 200080, China
  • Online:2019-07-20 Published:2019-07-22

摘要: 目的 阻塞性睡眠呼吸暂停低通气综合征(OSAS)可致全身炎症反应,是心血管疾病的一个独立危险因素,持续气道正压通气治疗(CPAP)已被证明可改善血清炎症标志物水平。研究通过对历年文献进行系统的荟萃分析,评估CPAP治疗对OSAS患者炎症标志物水平的影响。 方法 在PubMed、EMBASE和Cochrane图书馆检索系统检索英文文献,均以成人为研究对象,每项研究至少包含≥1个炎症标志物治疗前后的水平变化。OSAS定义为睡眠呼吸暂停低通气指数(AHI)≥5/h,用标准均数差(SMD)评估CPAP治疗是否降低炎症标志物水平。 结果 共筛选出1 128项研究报道,其中27项纳入分析。C反应蛋白(CRP)有17篇文献共895例患者;肿瘤坏死因子-α(TNF-α)有10篇文献共290例患者纳入研究。统计发现CPAP治疗前后OSAS患者血清CRP水平差异具有统计学意义(Z=4.55,P<0.00001,SMD 0.86,95% CI:0.49-1.23),CPAP治疗前后TNF-α水平变化差异无统计学意义(Z=1.92,P=0.05,SMD 1.08,95% CI:0.02-2.18)。 结论 长期CPAP治疗可降低OSAS患者血清CRP水平,而血清TNF-α水平无明显下降。CPAP治疗能够有效改善全身炎症反应,预防心血管疾病的进展。

关键词: 睡眠呼吸暂停, 持续正压通气, 炎症标志物, C反应蛋白, 肿瘤坏死因子-α

Abstract: Objective In recent years, the morbidity associated with obstructive sleep apnea syndrome(OSAS)has been increasing. It could be associated with inflammatory reactions and is a risk factor for coronary artery disease(CAD). Current evidence suggests that continuous positive airway pressure(CPAP)changes the levels of inflammatory markers. We analyzed the data from published studies using a systematic meta-analysis. Methods Study eligibility criteria included full-text English studies from PubMed, Embase, and Cochrane libraries, addressing the values of at least one of the inflammatory markers before and after CPAP treatment. We used the definition of OSA as an apnea-hypopnea index(AHI)of ≥5/h and reported values as means with standard deviations. Statistical results showed that the serum C-reactive protein(CRP)levels of OSAS patients before and after CPAP treatment were significantly different(Z= 4.55; P<0.000 01; SMD=0.86; 95%CI=0.49-1.23). There were no significant differences in tumor necrosis factor-α(TNFα)levels before and after CPAP treatment(Z=1.92; P=0.05; SMD=1.08; 95%CI=0.02-2.18). Results A total of 17 studies involving 895 OSA patients were included in the meta-analysis of CRP, and 10 studies involving 290 OSA patients on TNF-α were included. Conclusion CPAP therapy partially suppresses systemic inflammation in OSA patients, and substantial differences are present among the various inflammatory markers. CPAP has been proposed to be linked with the pathogenesis of systemic inflammation to prevent cardiovascular diseases.

Key words: Sleep apnea, Continuous Positive Airway Pressure, Inflammatory markers, C-reactive protein, Tumor necrosis factor-α

中图分类号: 

  • R766.7
[1] Liu J, Wei C, Huang L, et al. Prevalence of signs and symptoms suggestive of obstructive sleep apnea syndrome in Guangxi, China[J]. Sleep Breath, 2014, 18(2): 375-382.doi: 10.1007/s11325-013-0896-2.
[2] Watson N F. Health Care Savings: The Economic Value of Diagnostic and Therapeutic Care for Obstructive Sleep Apnea[J]. J Clin Sleep Med, 2016, 12(8): 1075-1077.doi: 10.5664/jcsm.6034.
[3] Milleron O, Pilliere R, Foucher A, et al. Benefits of obstructive sleep apnoea treatment in coronary artery disease: a long-term follow-up study[J]. Eur Heart J, 2004, 25(9): 728-734.doi: 10.1016/j.ehj.2004.02.008.
[4] Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample[J]. BMC Med Res Methodol, 2005, 5: 13.doi: 10.1186/1471-2288-5-13.
[5] Kohler M, Ayers L, Pepperell JC, et al. Effects of continuous positive airway pressure on systemic inflammation in patients with moderate to severe obstructive sleep apnoea: a randomised controlled trial[J]. Thorax, 2009, 64(1): 67-73.doi: 10.1136/thx.2008.097931.
[6] Hegglin A, Schoch OD, Korte W, et al. Eight months of continuous positive airway pressure(CPAP)decrease tumor necrosis factor alpha(TNFA)in men with obstructive sleep apnea syndrome[J]. Sleep Breath, 2012, 16(2): 405-412.doi: 10.1007/s11325-011-0512-2.
[7] Tamaki S, Yamauchi M, Fukuoka A, et al. Production of inflammatory mediators by monocytes in patients with obstructive sleep apnea syndrome[J]. Intern Med, 2009, 48(15): 1255-1262.
[8] Chung S, Yoon IY, Lee CH, et al. The effects of nasal continuous positive airway pressure on vascular functions and serum cardiovascular risk factors in obstructive sleep apnea syndrome[J]. Sleep Breath, 2011, 15(1): 71-76.doi: 10.1007/s11325-009-0323-x.
[9] Colish J, Walker JR, Elmayergi N, et al. Obstructive sleep apnea: effects of continuous positive airway pressure on cardiac remodeling as assessed by cardiac biomarkers, echocardiography, and cardiac MRI[J]. Chest, 2012, 141(3): 674-681.doi: 10.1378/chest.11-0615.
[10] Dorkova Z, Petrasova D, Molcanyiova A, et al. Effects of continuous positive airway pressure on cardiovascular risk profile in patients with severe obstructive sleep apnea and metabolic syndrome[J]. Chest, 2008, 134(4): 686-692.doi:10.1378/chest.08-0556.
[11] Harsch IA, Koebnick C, Wallaschofski H, et al. Resistin levels in patients with obstructive sleep apnoea syndrome - the link to subclinical inflammation?[J]. Med Sci Monit, 2004, 10(9): 510-515.
[12] Iesato K, Tatsumi K, Saibara T, et al. Decreased lipoprotein lipase in obstructive sleep apnea syndrome[J]. Circ J, 2007, 71(8): 1293-1298.
[13] Karamanli H, Ozol D, Ugur KS, et al. Influence of CPAP treatment on airway and systemic inflammation in OSAS patients[J]. Sleep Breath, 2014, 18(2): 251-256.doi:10.1007/s11325-012-0761-8.
[14] Panoutsopoulos A, Kallianos A, Kostopoulos K, et al. Effect of CPAP treatment on endothelial function and plasma CRP levels in patients with sleep apnea[J]. Med Sci Monit, 2012, 18(12): 747-751.
[15] Patruno V, Aiolfi S, Costantino G, et al. Fixed and autoadjusting continuous positive airway pressure treatments are not similar in reducing cardiovascular risk factors in patients with obstructive sleep apnea[J]. Chest, 2007, 131(5): 1393-1399.doi: 10.1378/chest.06-2192.
[16] Qian J, Ma X, Pan L, et al. [The effects of continuous positive airway pressure ventilation on hypersensitive C reaction protein and 8-isoprostane in patients with obstructive sleep apnea hypopnea syndrome] [J]. Zhonghua Nei Ke Za Zhi, 2015, 54(7): 633-637.
[17] Ryan S, Nolan GM, Hannigan E, et al. Cardiovascular risk markers in obstructive sleep apnoea syndrome and correlation with obesity[J]. Thorax, 2007, 62(6): 509-514.doi: 10.1136/thx.2006.066720.
[18] Schiza SE, Mermigkis C, Panagiotis P, et al. C-reactive protein evolution in obstructive sleep apnoea patients under CPAP therapy[J]. Eur J Clin Invest, 2010, 40(11): 968-975.doi: 10.1111/j.1365-2362.2010.02348.x.
[19] Steiropoulos P, Papanas N, Nena E, et al. Markers of glycemic control and insulin resistance in non-diabetic patients with Obstructive Sleep Apnea Hypopnea Syndrome: does adherence to CPAP treatment improve glycemic control?[J]. Sleep Med, 2009, 10(8): 887-891.doi: 10.1016/j.sleep.2008.10.004.
[20] Steiropoulos P, Tsara V, Nena E, et al. Effect of continuous positive airway pressure treatment on serum cardiovascular risk factors in patients with obstructive sleep apnea-hypopnea syndrome[J]. Chest, 2007, 132(3): 843-851.doi: 10.1378/chest.07-0074.
[21] Sun L, Chen R, Wang J, et al. Association between inflammation and cognitive function and effects of continuous positive airway pressure treatment in obstructive sleep apnea hypopnea syndrome[J]. Zhonghua Yi Xue Za Zhi, 2014, 94(44): 3483-3487.
[22] Vgontzas AN, Zoumakis E, Bixler EO, et al. Selective effects of CPAP on sleep apnoea-associated manifestations[J]. Eur J Clin Invest, 2008, 38(8): 585-595.doi: 10.1111/j.1365-2362.2008.01984.x.
[23] Yokoe T, Minoguchi K, Matsuo H, et al. Elevated levels of C-reactive protein and interleukin-6 in patients with obstructive sleep apnea syndrome are decreased by nasal continuous positive airway pressure[J]. Circulation, 2003, 107(8): 1129-1134.
[24] Zhao Q, Liu ZH, Zhao ZH, et al. Effects of obstructive sleep apnea and its treatment on cardiovascular risk in CAD patients[J]. Respir Med, 2011, 105(10): 1557-1564.doi: 10.1016/j.rmed.2011.05.010.
[25] Carneiro G, Togeiro SM, Ribeiro-Filho FF, et al. Continuous positive airway pressure therapy improves hypoadiponectinemia in severe obese men with obstructive sleep apnea without changes in insulin resistance[J]. Metab Syndr Relat Disord, 2009, 7(6): 537-542.doi: 10.1089/met.2009.0019.
[26] Guasti L, Marino F, Cosentino M, et al. Cytokine production from peripheral blood mononuclear cells and polymorphonuclear leukocytes in patients studied for suspected obstructive sleep apnea[J]. Sleep Breath, 2011, 15(1): 3-11.doi: 10.1007/s11325-009-0315-x.
[27] Jiang H, Cao H, Wang P, et al. Tumour necrosis factor-alpha/interleukin-10 ratio in patients with obstructive sleep apnoea hypopnoea syndrome[J]. J Laryngol Otol, 2015, 129(1): 73-78.doi: 10.1017/S0022215114002990.
[28] Minoguchi K, Tazaki T, Yokoe T, et al. Elevated production of tumor necrosis factor-alpha by monocytes in patients with obstructive sleep apnea syndrome[J]. Chest, 2004, 126(5): 1473-1479.doi: 10.1378/chest.126.5.1473.
[29] Unuvar Dogan F, Yosunkaya S, Kuzu Okur H, et al. Relationships between Obstructive Sleep Apnea Syndrome, Continuous Positive Airway Pressure Treatment, and Inflammatory Cytokines[J]. Sleep Disord, 2014, 2014: 518920.doi: 10.1155/2014/518920.
[30] Kapur VK, Auckley DH, Chowdhuri S, et al. Clinical practice guideline for diagnostic testing for adult obstructive sleep apnea: an american academy of sleep medicine clinical practice guideline[J]. J Clin Sleep Med, 2017, 13(3): 479-504.doi: 10.5664/jcsm.6506.
[31] Bouloukaki I, Mermigkis C, Kallergis EM, et al. Obstructive sleep apnea syndrome and cardiovascular disease: The influence of C-reactive protein[J]. World J Exp Med, 2015, 5(2): 77-83.doi: 10.5493/wjem.v5.i2.77.
[32] Kanbay A, Ceylan E, Koseoglu HI, et al. Endocan: a novel predictor of endothelial dysfunction in obstructive sleep apnea syndrome[J]. Clin Respir J, 2018, 12(1): 84-90.doi: 10.1111/crj.12487.
[33] Idriss HT, Naismith JH. TNF alpha and the TNF receptor superfamily: structure-function relationship(s)[J]. Microsc Res Tech, 2000, 50(3): 184-195.doi:10.1002/1097-0029(20000801)50:3<184: AID-JEMT2>3.0.CO;2-H.
[34] Bhatt SP, Guleria R, Vikram NK, et al. Non-alcoholic fatty liver disease is an independent risk factor for inflammation in obstructive sleep apnea syndrome in obese Asian Indians[J]. Sleep Breath, 2019, 23(1):171-178. doi: 10.1007/s11325-018-1678-7.
[35] Ciccone MM, Scicchitano P, Zito A, et al. Correlation between inflammatory markers of atherosclerosis and carotid intima-media thickness in Obstructive Sleep Apnea[J]. Molecules, 2014, 19(2): 1651-1662.doi: 10.3390/molecules19021651.
[36] Guo Y, Pan L, Ren D, et al. Impact of continuous positive airway pressure on C-reactive protein in patients with obstructive sleep apnea: a meta-analysis[J]. Sleep Breath, 2013, 17(2): 495-503.doi: 10.1007/s11325-012-0722-2.
[1] 宋凡,黄炜峻,许华俊,关建,易红良. 阻塞性睡眠呼吸暂停综合征患者颈动脉弹性与氧化应激反应的关系[J]. 山东大学耳鼻喉眼学报, 2019, 33(4): 99-104.
[2] 季迪,陈祥,余林. 软腭平面手术联合舌骨悬吊术治疗阻塞性睡眠呼吸暂停综合征效果的Meta分析[J]. 山东大学耳鼻喉眼学报, 2019, 33(4): 124-130.
[3] 刘燕,魏萍,寇巍,胡思洁,武小芳,刘萌雅,陈成,姚红兵. 儿童腺样体肥大与耳鼻咽喉科常见疾病关系的研究进展[J]. 山东大学耳鼻喉眼学报, 2019, 33(4): 149-154.
[4] 闫志刚,张慧慧,于丹,刘岩,文连姬,王迪. 成人阻塞性睡眠呼吸暂停综合征患者认知功能障碍的诊断及治疗研究进展[J]. 山东大学耳鼻喉眼学报, 2019, 33(4): 155-161.
[5] 殷敏,程雷. 鼾症命名之我见[J]. 山东大学耳鼻喉眼学报, 2019, 33(3): 19-22.
[6] 胡安,邢艳莉,陈晓平,薛晓成,张燚,胥伟华. 咽喉反流伴阻塞性睡眠呼吸暂停低通气综合征患者的治疗及其咽喉反流体征评分、症状指数特点[J]. 山东大学耳鼻喉眼学报, 2019, 33(2): 86-89.
[7] 张丙文,陈荣荣,吴元庆,徐进敬,姜亮,戚建伟. Müller状态下128排螺旋CT三维重建在OSAS患者上气道阻塞平面评估中的价值[J]. 山东大学耳鼻喉眼学报, 2019, 33(2): 90-94.
[8] 李绍楠综述,于丹,文连姬审校. 阻塞性睡眠呼吸暂停综合征与呼吸循环系统疾病的相关性[J]. 山东大学耳鼻喉眼学报, 2019, 33(1): 140-144.
[9] 刘大炜,张宇,李成林,陈秀梅,宋西成. 加速康复外科在儿童OSAS围手术期中的应用[J]. 山东大学耳鼻喉眼学报, 2018, 32(5): 19-22.
[10] 吕旭琴,万文锦. 阻塞性睡眠呼吸暂停低通气综合征合并高血糖患者的围手术期血糖管理[J]. 山东大学耳鼻喉眼学报, 2018, 32(4): 100-104.
[11] 李延忠,张泰. 关于儿童阻塞性睡眠呼吸暂停低通气综合征我们面临的问题[J]. 山东大学耳鼻喉眼学报, 2018, 32(2): 1-5.
[12] 刘大波. 重视儿童阻塞性睡眠呼吸暂停低通气综合征睡眠结构紊乱[J]. 山东大学耳鼻喉眼学报, 2018, 32(2): 6-8.
[13] 许志飞,倪鑫. 重视阻塞性睡眠呼吸暂停低通气综合征儿童腺样体[J]. 山东大学耳鼻喉眼学报, 2018, 32(2): 9-13.
[14] 王岩,师晓丽. 变态反应与儿童OSAHS的关系[J]. 山东大学耳鼻喉眼学报, 2018, 32(2): 14-18.
[15] 杨微,郑莉,许志飞. 中重度阻塞性睡眠呼吸暂停低通气综合征儿童无创正压[J]. 山东大学耳鼻喉眼学报, 2018, 32(2): 19-24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨长亮,黄治物,姚行齐,诸勇,孙艺 . 正常气骨导听性脑干反应及其应用[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 9 -13 .
[2] 曹忠良 . 颌面复合伤155例临床分析[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 89 -89 .
[3] 毕景云 . 鼻中隔矫正术后血肿的处理[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 90 -91 .
[4] 刘大昱,潘新良,雷大鹏,许风雷,张立强,栾信庸 . 梨状窝内侧壁癌的手术治疗[J]. 山东大学耳鼻喉眼学报, 2007, 21(1): 8 -11 .
[5] 刘 艳,刘新义,王金平,李大健 . 后鼓室解剖结构测量观察及临床意义[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 218 -221 .
[6] 赵 敏,王守森,甄泽年,陈贤明,王茂鑫 . 鼻内镜联合显微镜行蝶窦及经蝶鞍区微创手术[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 244 -245 .
[7] 伦 杰,吕心红 . 鼻部脂溢性角化病1例[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 252 -252 .
[8] 王红霞,王鹏程 . NSE、S100及GFAP在视网膜母细胞瘤中的表达及意义[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 263 -264 .
[9] 黄 方,黄海琼,黄建强,何荷蕃 . 支气管内镜视频监视系统在小儿气管-支气管异物诊治中的应用[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 276 -277 .
[10] 于志良,王卫卫,王明华 . 耳鼻喉综合动力系统切除会厌囊肿23例[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 278 -279 .