山东大学耳鼻喉眼学报 ›› 2020, Vol. 34 ›› Issue (2): 47-52.doi: 10.6040/j.issn.1673-3770.1.2020.013

• 临床研究 • 上一篇    下一篇

Evaluation of cyclorotation during femtosecond laser-assisted cataract surgery performed by using LenSx femtosecond laser

Shazia BANO1, Shaowei LI1,2, Chang LIU2, Xinxin LI1, Saeed ALI1   

  1. 1. Department of Ophthalmology, Aier School of Ophthalmology, Central South University, Changsha 410083, Hunan, China;
    2. Department of Ophthalmology, Beijing Aier-Intech Eye Hospital, Beijing 100021, China
  • 发布日期:2020-04-07
  • 通讯作者: Shaowei LI. E-mail:shaoweili2005@vip.163.com

  • Published:2020-04-07

Abstract: Objectives To evaluate degrees and percentages of cyclorotation in Chinese patients during femtosecond laser assisted cataract surgery performed by using LenSx femtosecond laser platform and to further sub-analyze bilateral cases to assess the congruency between both eyes. Methods This was a single-centre retrospective study(Beijing AIER-Intec Eye Hospital, Beijing, China)in which the records of 330 eyes of 274 patients who underwent femtosecond laser-assisted cataract surgery in 1 or two eyes(with placement of posterior chamber IOL)between May 2017 and July 2019 by using femtosecond laser platform(LenSx)were reviewed.LenSx Femtosecond Laser(Alcon Laboratories, Inc, Fort Worth, Texas, USA)was used to carry out corneal incisions, anterior capsulotomies and lens fragmentation in this procedure. All the patients were marked on corneal limbus(at 3 and 9 o’clock positions)by using sterile skin marker(Medplus.inc)while sitting upright preoperatively. Percentages of cyclorotation were calculated. Absolutes values were taken for all calculations. The cyclorotation data was tested to determine whether it followed a normal distribution. Descriptive statistics were applied to calculate percentile values of cyclorotation which is presented as(M [P25; P75). Results This retrospective study evaluated 330 eyes of 274 Chinese patients who had femtosecond laser-assisted cataract surgery using the femtosecond laser platform. Of the 330 eyes, there were 90 eyes(27.27%)that did not show cyclorotation. Out of 330 eyes that were analyzed, 72.72%(240 eyes)exhibited cyclorotation. The median value of cyclorotation was 3.0[0.0; 5.0](ranged between 0 to 19 degrees). Of the 330 eyes, there were 90 eyes(27.27%)that did not show cyclorotation. Overall anticlockwise rotation(172 eyes, 52.12%)was more common than clockwise rotation(68 eyes, 20.60%).The total numbers of right and left eyes were 169 and 161 respectively. In terms of laterality, 43.78% of right eyes(74 eyes out of 169)and 60.86% of left eyes(98 eyes out of 161)showed anticlockwise rotation. 25.44% of right eyes(43eyes)and 15.52% of left eyes(25 eyes)exhibited clockwise rotation. Therefore anticlockwise rotation was considered as common occurrence in both left and right eyes. In order to assess the congruency of cyclorotation between eyes in bilateral cases, a subanalysis of all the patients who underwent bilateral femtosecond laser-assisted cataract surgery(56 out of 274)was performed. In total, 17 patients exhibited incylorotation(both eyes moved nasally)and 4 patients showed motion of eyes temporally exhibiting excyclorotation. In rest of patients some of them showed no rotation and others exhibited the movement of both eyes in opposite direction(one eye nasally and other temporally and vice versa).There were no AK-related complications or complications during femtosecond laser-assisted cataract surgery. Among them 56 were bilateral cases. Conclusion Clinically significant cyclorotation can occur during femtosecond laser assisted cataract surgery causing axis misalignment which might influence the desired astigmatism correction outcomes. It is highly recommended to take crucial compensatory measures to address this problem.

Key words: Femtosecond Laser, Cataract, Cyclorotation, Clockwise rotation, Anticlockwise rotation

中图分类号: 

  • R772.2
[1] Ang RET, Quinto MMS, Cruz EM, et al. Comparison of clinical outcomes between femtosecond laser-assisted versus conventional phacoemulsification[J]. Eye Vis(Lond), 2018, 5: 8. doi:10.1186/s40662-018-0102-5.
[2] Yoo A, Yun S, Kim JY, et al. Femtosecond laser-assisted arcuate keratotomy versus toric IOL implantation for correcting astigmatism[J]. J Refract Surg, 2015, 31(9): 574-578. doi:10.3928/1081597X-20150820-01.
[3] Wang J, Zhao JY, Xu J, et al. Evaluation of the effectiveness of combined femtosecond laser-assisted cataract surgery and femtosecond laser astigmatic keratotomy in improving post-operative visual outcomes[J]. BMC Ophthalmol, 2018, 18(1): 161. doi:10.1186/s12886-018-0823-1.
[4] Baharozian CJ, Song C, Hatch KM, et al. A novel nomogram for the treatment of astigmatism with femtosecond-laser arcuate incisions at the time of cataract surgery[J]. Clin Ophthalmol, 2017, 11: 1841-1848. doi:10.2147/OPTH.S141255.
[5] Aristeidou A, Taniguchi EV, Tsatsos M, et al. The evolution of corneal and refractive surgery with the femtosecond laser[J]. Eye Vis(Lond), 2015, 2: 12. doi:10.1186/s40662-015-0022-6.
[6] Chan TC, Ng AL, Cheng GP, et al. Corneal astigmatism and aberrations after combined femtosecond-assisted phacoemulsification and arcuate keratotomy: two-year results[J]. Am J Ophthalmol, 2016, 170: 83-90. doi:10.1016/j.ajo.2016.07.022.
[7] Becker R, Krzizok TH, Wassill H. Use of preoperative assessment of positionally induced cyclotorsion: a video-oculographic study[J]. Br J Ophthalmol, 2004, 88(3): 417-421. doi:10.1136/bjo.2003.025783.
[8] Fea AM, Sciandra L, Annetta F, et al. Cyclotorsional eye movements during a simulated PRK procedure[J]. Eye(Lond), 2006, 20(7): 764-768. doi:10.1038/sj.eye.6701994.
[9] Chang J. Cyclotorsion during laser in situ keratomileusis[J]. J Cataract Refract Surg, 2008, 34(10): 1720-1726. doi:10.1016/j.jcrs.2008.06.027.
[10] Shen EP, Chen WL, Hu FR. Manual limbal markings versus Iris-registration software for correction of myopic astigmatism by laser in situ keratomileusis[J]. J Cataract Refract Surg, 2010, 36(3): 431-436. doi:10.1016/j.jcrs.2009.10.030.
[11] Lin HY, Chuang YJ, Lin PJ, et al. Novel method for preventing cyclorotation in Ziemer Femto LDV Z8 femtosecond laser-assisted cataract surgery with Verion image-guided system[J]. Clin Ophthalmol, 2019, 13: 415-419. doi:10.2147/OPTH.S177219.
[12] Chen P, Ye YM, Yu N, et al. Comparison of small incision lenticule extraction surgery with and without cyclotorsion error correction for patients with astigmatism[J]. Cornea, 2019, 38(6): 723-729. doi:10.1097/ICO.0000000000001937.
[13] Pajic B, Cvejic Z, Mijatovic Z, et al. Excimer laser surgery: biometrical Iris eye recognition with cyclorotational control eye tracker system[J]. Sensors(Basel), 2017, 17(6): E1211. doi:10.3390/s17061211.
[14] Liu YL, Yeh PT, Huang JY, et al. Pupil centroid shift and cyclotorsion in bilateral wavefront-guided laser refractive surgery and the correlation between both eyes[J]. Taiwan Yi Zhi, 2013, 112(2): 64-71. doi:10.1016/j.jfma.2012.02.028.
[15] Alió Del Barrio JL, Tiveron M, Plaza-Puche AB, et al. Laser-assisted in situ keratomileusis with optimized, fast-repetition, and cyclotorsion control excimer laser to treat hyperopic astigmatism with high cylinder[J]. Eur J Ophthalmol, 2017, 27(6): 686-693. doi:10.5301/ejo.5001051.
[16] Arba Mosquera S, Verma S. Effects of torsional movements in refractive procedures[J]. J Cataract Refract Surg, 2015, 41(8): 1752-1766. doi:10.1016/j.jcrs.2015.07.017.
[17] Mohammadpour M, Khorrami-Nejad M, Chini-Foroush N. Correlation between Iris-registered static and dynamic cyclotorsions with preoperative refractive astigmatism in PRK candidates[J]. J Curr Ophthalmol, 2019, 31(1): 36-42. doi:10.1016/j.joco.2018.10.006.
[18] Ganesh S, Brar S, Pawar A. Results of intraoperative manual cyclotorsion compensation for myopic astigmatism in patients undergoing small incision lenticule extraction(SMILE)[J]. J Refract Surg, 2017, 33(8): 506-512. doi:10.3928/1081597X-20170328-01.
[19] Ozulken K, Ilhan C. Effects of cyclotorsion orientation and magnitude in eyes with compound myopic astigmatism on the compensation capacity of WaveLight EX500 photorefractive keratectomy[J]. Korean J Ophthalmol, 2019, 33(5): 458-466. doi:10.3341/kjo.2019.0042.
[20] Lucena AR, Mota JA, Lucena DR, et al. Cyclotorsion measurement in laser refractive surgery[J]. Arq Bras Oftalmol, 2013, 76(6): 339-340. doi:10.1590/s0004-27492013000600003.
[21] Popp N, Hirnschall N, Maedel S, et al. Evaluation of 4 corneal astigmatic marking methods[J]. J Cataract Refract Surg, 2012, 38(12): 2094-2099. doi:10.1016/j.jcrs.2012.07.039.
[22] Hummel CD, Diakonis VF, Desai NR, et al. Cyclorotation during femtosecond laser-assisted cataract surgery measured using Iris registration[J]. J Cataract Refract Surg, 2017, 43(7): 952-955. doi:10.1016/j.jcrs.2017.04.034.
[23] Zhao FK, Li L, Zhou WK, et al. Correlative factors' analysis of postural-related ocular cyclotorsion with image-guided system[J]. Jpn J Ophthalmol, 2018, 62(2): 237-242. doi:10.1007/s10384-017-0544-7.
[24] Xiang W, Chen W, Liu RJ, et al. Ocular cyclorotation and corneal axial misalignment in femtosecond laser-assisted cataract surgery[J]. Curr Eye Res, 2019, 44(12): 1313-1318. doi:10.1080/02713683.2019.1638943.
[25] Terauchi R, Horiguchi H, Ogawa T, et al. Posture-related ocular cyclotorsion during cataract surgery with an ocular registration system[J]. Sci Rep, 2020, 10(1): 2136. doi:10.1038/s41598-020-59118-9.
[1] 高芯,,王旭,. 角膜胶原交联术治疗感染性角膜疾病研究进展[J]. 山东大学耳鼻喉眼学报, 2019, 33(5): 153-157.
[2] 阳雪,李莹. 干眼对角膜内皮细胞的影响及相关因素分析[J]. 山东大学耳鼻喉眼学报, 2018, 32(4): 72-76.
[3] 宋森,李莹,丁欣,金玉梅. 飞秒激光小切口基质透镜取出术后早期视力恢复的相关因素分析[J]. 山东大学耳鼻喉眼学报, 2018, 32(4): 77-79.
[4] 林莉,杨旭. 白内障术后角膜上皮功能障碍治疗的疗效分析[J]. 山东大学耳鼻喉眼学报, 2016, 30(2): 84-86.
[5] 张晓,姜良柱,徐艳云,牟国营. 等渗与低渗核黄素诱导的角膜交联术治疗圆锥角膜的疗效观察[J]. 山东大学耳鼻喉眼学报, 2016, 30(2): 87-90.
[6] 王君影,李晓峰. 小牛血去蛋白提取物眼用凝胶对鼻咽癌放射治疗后眼角膜内皮细胞损伤的影响[J]. 山东大学耳鼻喉眼学报, 2016, 30(1): 76-79.
[7] 张春晓, 李志伟, 徐文文, 李凤娇, 陶祥臣, 牟国营. 核黄素/UVA诱导的角膜交联术治疗晚期圆锥角膜的安全性和有效性[J]. 山东大学耳鼻喉眼学报, 2015, 29(2): 86-88.
[8] 韩萍. 更昔洛韦滴眼液联合贝复舒治疗单疱病毒性角膜炎疗效分析[J]. 山东大学耳鼻喉眼学报, 2014, 28(3): 73-74.
[9] 崔长霞1,朱伟2,张春晓3,李志伟3. 核黄素/UVA诱导的角膜交联术治疗真菌性角膜溃疡[J]. 山东大学耳鼻喉眼学报, 2013, 27(5): 68-70.
[10] 郭慧,吴欣怡. 病毒性角膜内皮炎1例[J]. 山东大学耳鼻喉眼学报, 2012, 26(2): 2-2.
[11] 杨学秋1, 赵静静1, 庄文娟2. 临床常用角膜厚度的测量方法[J]. 山东大学耳鼻喉眼学报, 2012, 26(2): 80-82.
[12] 刘志谦. 结膜瓣遮盖术治疗难治性角膜溃疡27例[J]. 山东大学耳鼻喉眼学报, 2011, 25(3): 78-79.
[13] 张宁,田杰,吴佰文. 挫伤性睫状体脱离的非手术治疗[J]. 山东大学耳鼻喉眼学报, 2010, 24(5): 67-.
[14] 张颖,吴欣怡. 社区人群感染性角膜炎的认知及健康教育调查[J]. 山东大学耳鼻喉眼学报, 2010, 24(4): 52-54.
[15] 靳雷 崔建萍. 共焦显微镜在角膜溃疡病原学诊断中的临床应用[J]. 山东大学耳鼻喉眼学报, 2008, 22(6): 549-550.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 邓基波,孙奉乾,许安廷 . 大前庭导水管综合征[J]. 山东大学耳鼻喉眼学报, 2006, 20(2): 116 -118 .
[2] 周子宁,金国威 . 喉气管狭窄的预防和治疗进展[J]. 山东大学耳鼻喉眼学报, 2006, 20(5): 462 -465 .
[3] 周斌,李滨 . 鼻内窥镜下鼻窦鼻息肉手术75例疗效观察[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 24 -26 .
[4] 徐赛男,杨雷 . 红霉素促进鼻息肉上皮细胞凋亡的实验研究[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 27 -29 .
[5] 张玉光,韩旭光,张华,王旭,徐湘辉 . 改良穿透性角膜移植术治疗真菌性角膜炎[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 94 -95 .
[6] 刘联合 . 颈深部脓肿37例[J]. 山东大学耳鼻喉眼学报, 2008, 22(2): 180 -181 .
[7] 谢治年 ,姬长友 . RNA干扰及其在喉鳞癌研究中的应用[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 200 -203 .
[8] 乔 艺,倪关森,陈文文 . 改良悬雍垂腭咽成形术联合鼻腔手术治疗阻塞性睡眠呼吸暂停综合征38例[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 206 -208 .
[9] 汪晓锋,林 昶,程金妹 . 不同龄小鼠内耳中ABAD的表达及临床意义[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 207 -211 .
[10] 凡启军,黄治物,梅 玲,肖伯奎 . 荧光定量PCR测定水杨酸钠作用后大鼠耳蜗基因的表达[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 212 -214 .