山东大学耳鼻喉眼学报 ›› 2021, Vol. 35 ›› Issue (3): 106-111.doi: 10.6040/j.issn.1673-3770.0.2020.163
李春花,刘肖综述刘红兵审校
LI Chunhua, LIU XiaoOverview,LIU HongbingGuidance
摘要: 半乳糖凝集素10(Galectin-10)被发现已有很长的历史,但是探索其病理作用的研究很少。近几年,半乳糖凝集素10受到越来越多的关注,特别是其在气道嗜酸性粒细胞疾病中研究越来越多。综述了Galectin-10历史回顾及其在慢性鼻窦炎中的相关研究,Galectin-10/CLC蛋白不仅仅可作为以2型免疫反应为特征的CRSwNP的生物标志物,而且可能在其发病机制中发挥一定作用,并且很有希望作为以2型免疫反应为特征的CRSwNP的药物靶点。
中图分类号:
[1] Fokkens W J, Lund V J, Hopkins C, et al. European Position Paper on Rhinosinusitis and Nasal Polyps 2020[J]. Rhinology, 2020, 58(Suppl S29):1-464. doi:10.4193/Rhin20.600. [2] Su JY. A brief history of Charcot-Leyden crystal protein/galectin-10 research[J]. Molecules, 2018, 23(11): E2931. doi:10.3390/molecules23112931. [3] Johannes L, Jacob R, Leffler H. Galectins at a glance[J]. J Cell Sci, 2018, 131(9): jcs208884. doi:10.1242/jcs.208884. [4] Rao SP, Ge XN, Sriramarao P. Regulation of eosinophil recruitment and activation by galectins in allergic asthma[J]. Front Med(Lausanne), 2017, 4: 68. doi:10.3389/fmed.2017.00068. [5] Grozdanovic MM, Doyle CB, Liu L, et al. Charcot-Leyden crystal protein/galectin-10 interacts with cationic ribonucleases and is required for eosinophil granulogenesis[J]. J Allergy Clin Immunol, 2020,146(2):377-389. doi:10.1016/j.jaci.2020.01.013. [6] Yang RY, Rabinovich GA, Liu FT. Galectins: structure, function and therapeutic potential[J]. Expert Rev Mol Med, 2008, 10: e17. doi:10.1017/s1462399408000719. [7] Boscher C, Dennis JW, Nabi IR. Glycosylation, galectins and cellular signaling[J]. Curr Opin Cell Biol, 2011, 23(4): 383-392. doi:10.1016/j.ceb.2011.05.001. [8] Swaminathan GJ, Leonidas DD, Savage MP, et al. Selective recognition of mannose by the human eosinophil Charcot-Leyden crystal protein(galectin-10): a crystallographic study at 1.8 A resolution[J]. Biochemistry, 1999, 38(46): 15406. doi:10.1021/bi995093f. [9] Su JY, Gao J, Si YL, et al. Galectin-10: a new structural type of prototype galectin dimer and effects on saccharide ligand binding[J]. Glycobiology, 2018, 28(3): 159-168. doi:10.1093/glycob/cwx107. [10] Charcot JM, Robin C. Observation de leucocythemie[J]. Mem. Soc. Biol, 1853(5):44-50. [11] Leyden E. Zur kenntniss Des bronchial-asthma[J]. Archiv F Pathol Anat, 1872, 54(4): 324-344. doi:10.1007/bf01997025. [12] Thompson JH, Paddock FK. The significance of Charcot-Leyden crystals[J]. N Engl J Med, 1940, 223(23): 936-939. doi:10.1056/nejm194012052232304. [13] Neumann A. über Die natur der Charcot-Leyden-böttcher-Neumann-krystalle.(bemerkungen zur gleichnamigen arbeit von wrede-boldt-buch.)[J]. Hoppe-Seyler's Zeitschrift Für Physiol Chemie, 1928, 173(1/2): 69-71. doi:10.1515/bchm2.1928.173.1-2.69. [14] Ayres WW, Starkey NM. Studies on Charcot-Leyden crystals[J]. Blood, 1950, 5(3): 254-266. doi:10.1182/blood.v5.3.254.254. [15] Guo L, Johnson RS, Schuh JC. Biochemical characterization of endogenously formed eosinophilic crystals in the lungs of mice[J]. J Biol Chem, 2000, 275(11): 8032-8037. doi:10.1074/jbc.275.11.8032. [16] Weller PF, Goetzl EJ, Austen KF. Identification of human eosinophil lysophospholipase as the constituent of Charcot-Leyden crystals[J]. Proc Natl Acad Sci USA, 1980, 77(12): 7440-7443. doi:10.1073/pnas.77.12.7440. [17] Huffnagle GB, Boyd MB, Street NE, et al. IL-5 is required for eosinophil recruitment, crystal deposition, and mononuclear cell recruitment during a pulmonary Cryptococcus neoformans infection in genetically susceptible mice(C57BL/6)[J]. J Immunol, 1998, 160(5): 2393-2400. [18] Hoenerhoff MJ, Starost MF, Ward JM. Eosinophilic crystalline pneumonia as a major cause of death in 129S4/SvJae mice[J]. Vet Pathol, 2006, 43(5): 682-688. doi:10.1354/vp.43-5-682. [19] Wilkerson EM, Johansson MW, Hebert AS, et al. The peripheral blood eosinophil proteome[J]. J Proteome Res, 2016, 15(5): 1524-1533. doi:10.1021/acs.jproteome.6b00006. [20] Ackerman SJ, Corrette SE, Rosenberg HF, et al. Molecular cloning and characterization of human eosinophil Charcot-Leyden crystal protein(lysophospholipase). Similarities to IgE binding proteins and the S-type animal lectin superfamily[J]. J Immunol, 1993, 150(2): 456-468. [21] Ackerman SJ, Weil GJ, Gleich GJ. Formation of Charcot-Leyden crystals by human basophils[J]. J Exp Med, 1982, 155(6): 1597-1609. doi:10.1084/jem.155.6.1597. [22] Dvorak AM, Letourneau L, Weller PF, et al. Ultrastructural localization of Charcot-Leyden crystal protein(lysophospholipase)to intracytoplasmic crystals in tumor cells of primary solid and papillary epithelial neoplasm of the pancreas[J]. Lab Invest, 1990, 62(5): 608-615. [23] Kubach J, Lutter P, Bopp T, et al. Human CD4+CD25+ regulatory T cells: proteome analysis identifies galectin-10 as a novel marker essential for their anergy and suppressive function[J]. Blood, 2007, 110(5): 1550-1558. doi:10.1182/blood-2007-01-069229. [24] Noh S, Jin S, Park CO, et al. Elevated galectin-10 expression of IL-22-producing T cells in patients with atopic dermatitis[J]. J Invest Dermatol, 2016, 136(1): 328-331. doi:10.1038/JID.2015.369. [25] Ali ND, Weissmann D. Charcot-Leyden crystals in T-cell lymphoblastic lymphoma[J]. Blood, 2017, 129(3): 394. doi:10.1182/blood-2016-10-743179. [26] Lingblom C, Andersson J, Andersson K, et al. Regulatory eosinophils suppress T cells partly through galectin-10[J]. J Immunol, 2017, 198(12): 4672-4681. doi:10.4049/jimmunol.1601005. [27] Zhou Z, Tenen DG, Dvorak AM, et al. The gene for human eosinophil Charcot-Leyden crystal protein directs expression of lysophospholipase activity and spontaneous crystallization in transiently transfected COS cells[J]. J Leukoc Biol, 1992, 52(6): 588-595. doi:10.1002/jlb.52.6.588. [28] Dvorak AM, Letourneau L, Login GR, et al. Ultrastructural localization of the Charcot-Leyden crystal protein(lysophospholipase)to a distinct crystalloid-free granule population in mature human eosinophils[J]. Blood, 1988, 72(1): 150-158. [29] Calafat J, Janssen H, Knol EF, et al. Ultrastructural localization of Charcot-Leyden crystal protein in human eosinophils and basophils[J]. Eur J Haematol, 1997, 58(1): 56-66. doi:10.1111/j.1600-0609.1997.tb01411.x. [30] Su JY, Gao J, Si YL, et al. Galectin-10: a new structural type of prototype galectin dimer and effects on saccharide ligand binding[J]. Glycobiology, 2018, 28(3): 159-168. doi:10.1093/glycob/cwx107. [31] Ueki S, Miyabe Y, Yamamoto Y, et al. Charcot-Leyden crystals in eosinophilic inflammation: active cytolysis leads to crystal formation[J]. Curr Allergy Asthma Rep, 2019, 19(8): 35. doi:10.1007/s11882-019-0868-0. [32] Grozdanovic MM, Doyle CB, Liu L, et al. Charcot-Leyden crystal protein/galectin-10 interacts with cationic ribonucleases and is required for eosinophil granulogenesis[J]. J Allergy Clin Immunol, 2020: S0091-S6749(20)30100-7. doi:10.1016/j.jaci.2020.01.013. [33] Ueki S, Tokunaga T, Melo RCN, et al. Charcot-Leyden crystal formation is closely associated with eosinophil extracellular trap cell death[J]. Blood, 2018, 132(20): 2183-2187. doi:10.1182/blood-2018-04-842260. [34] Su JY, Song CY, Si YL, et al. Identification of key amino acid residues determining ligand binding specificity, homodimerization and cellular distribution of human galectin-10[J]. Glycobiology, 2019, 29(1): 85-93. doi:10.1093/glycob/cwy087. [35] Dyer KD, Rosenberg HF. Eosinophil Charcot-Leyden crystal protein binds to beta-galactoside sugars[J]. Life Sci, 1996, 58(23): 2073-2082. doi:10.1016/0024-3205(96)00201-9. [36] Negrete-Garcia MC, Jiménez-Torres CY, Alvarado-Vásquez N, et al. Galectin-10 is released in the nasal lavage fluid of patients with aspirin-sensitive respiratory disease[J]. Sci World J, 2012: 474020. doi:10.1100/2012/474020. [37] Chua JC, Douglass JA, Gillman A, et al. Galectin-10, a potential biomarker of eosinophilic airway inflammation[J]. PLoS One, 2012, 7(8): e42549. doi:10.1371/journal.pone.0042549. [38] Nyenhuis SM, Alumkal P, Du J, et al. Charcot-Leyden crystal protein/galectin-10 is a surrogate biomarker of eosinophilic airway inflammation in asthma[J]. Biomark Med, 2019, 13(9): 715-724. doi:10.2217/bmm-2018-0280. [39] Persson EK, Verstraete K, Heyndrickx I, et al. Protein crystallization promotes type 2 immunity and is reversible by antibody treatment[J]. Science, 2019, 364(6442): eaaw4295. doi:10.1126/science.aaw4295. [40] Liu C, Yan B, Qi SH, et al. Predictive significance of Charcot-Leyden crystals for eosinophilic chronic rhinosinusitis with nasal polyps[J]. Am J Rhinol Allergy, 2019, 33(6): 671-680. doi:10.1177/1945892419860646. [41] Wu D, Yan B, Wang Y, et al. Charcot-Leyden crystal concentration in nasal secretions predicts clinical response to glucocorticoids in patients with chronic rhinosinusitis with nasal polyps[J]. J Allergy Clin Immunol, 2019, 144(1): 345-348.e8. doi:10.1016/j.jaci.2019.03.029. [42] Qi S, Yan B, Liu C, et al. Predictive significance of Charcot-Leyden Crystal mRNA levels in nasal brushing for nasal polyp recurrence[J]. Rhinology, 2020, 58(2): 166-174. doi:10.4193/Rhin19.296. [43] Ueki S, Konno Y, Takeda M, et al. Eosinophil extracellular trap cell death-derived DNA traps: Their presence in secretions and functional attributes[J]. J Allergy Clin Immunol, 2016, 137(1): 258-267. doi:10.1016/j.jaci.2015.04.041. [44] Ueki S, Tokunaga T, Fujieda S, et al. Eosinophil ETosis and DNA traps: a new look at eosinophilic inflammation[J]. Curr Allergy Asthma Rep, 2016, 16(8): 54. doi:10.1007/s11882-016-0634-5. [45] Gevaert E, Zhang N, Krysko O, et al. Extracellular eosinophilic traps in association with Staphylococcus aureus at the site of epithelial barrier defects in patients with severe airway inflammation[J]. J Allergy Clin Immunol, 2017, 139(6): 1849-1860.e6. doi:10.1016/j.jaci.2017.01.019. [46] Ueki S, Miyabe Y, Yamamoto Y, et al. Charcot-Leyden crystals in eosinophilic inflammation: active cytolysis leads to crystal formation[J]. Curr Allergy Asthma Rep, 2019, 19(8): 35. doi:10.1007/s11882-019-0868-0. [47] Franklin BS, Mangan MS, Latz E. Crystal Formation in Inflammation[J]. Annu Rev Immunol,2016,34:173-202. doi: 10.1146/annurev-immunol-041015-055539. [48] Mulay SR, Desai J, Kumar SV, et al. Cytotoxicity of crystals involves RIPK3-MLKL-mediated necroptosis[J]. Nat Commun, 2016, 7: 10274. doi:10.1038/ncomms10274. [49] Klion AD. Charcot-Leyden crystals: solving an Enigma[J]. Blood, 2018, 132(20): 2111-2112. doi:10.1182/blood-2018-09-873653. [50] Bachert C, Humbert M, Hanania NA, et al. Staphylococcus aureus and its IgE-inducing enterotoxins in asthma: current knowledge[J]. Eur Respir J, 2020, 55(4): 1901592. doi:10.1183/13993003.01592-2019. [51] Lin H, Li ZP, Lin D, et al. Role of NLRP3 inflammasome in eosinophilic and non-eosinophilic chronic rhinosinusitis with nasal polyps[J]. Inflammation, 2016, 39(6): 2045-2052. doi:10.1007/s10753-016-0442-z. [52] Rodríguez-Alcázar JF, Ataide MA, Engels G, et al. Charcot-Leyden crystals activate the NLRP3 inflammasome and cause IL-1β inflammation in human macrophages[J]. J Immunol, 2019, 202(2): 550-558. doi:10.4049/jimmunol.1800107. [53] Kim DK, Kim JY, Han YE, et al. Elastase-positive neutrophils are associated with refractoriness of chronic rhinosinusitis with nasal polyps in an Asian population[J]. Allergy Asthma Immunol Res, 2020, 12(1): 42-55. doi:10.4168/aair.2020.12.1.42. [54] Lan F, Zhang L. Understanding the role of neutrophils in refractoriness of chronic rhinosinusitis with nasal polyps[J]. Allergy Asthma Immunol Res, 2020, 12(1): 1-3. doi:10.4168/aair.2020.12.1.1. [55] Gevaert E, Delemarre T, De Volder J, et al. Charcot-Leyden crystals promote neutrophilic inflammation in patients with nasal polyposis[J]. J Allergy Clin Immunol, 2020, 145(1): 427-430.e4. doi:10.1016/j.jaci.2019.08.027. [56] Udell IJ, Gleich GJ, Allansmith MR, et al. Eosinophil granule major basic protein and Charcot-Leyden crystal protein in human tears[J]. Am J Ophthalmol, 1981, 92(6): 824-828. doi:10.1016/s0002-9394(14)75637-5. [57] Murakami A, Tutumi T, Watanabe K. Middle ear effusion and fungi[J]. Ann Otol Rhinol Laryngol, 2012, 121(9): 609-614. doi:10.1177/000348941212100908. [58] Lao LM, Kumakiri M, Nakagawa K, et al. The ultrastructural findings of Charcot-Leyden crystals in stroma of mastocytoma[J]. J Dermatol Sci, 1998, 17(3): 198-204. doi:10.1016/s0923-1811(98)00013-9. [59] Strauchen JA, Gordon RE. Crystalline inclusions in granulocytic sarcoma[J]. Arch Pathol Lab Med, 2002, 126(1): 85-86. doi:10.1043/0003-9985(2002)126<0085:CIIGS>2.0.CO;2. [60] Khrizman P, Altman JK, Mohtashamian A, et al. Charcot-Leyden crystals associated with acute myeloid leukemia: case report and literature review[J]. Leuk Res, 2010, 34(12): e336-e338. doi:10.1016/j.leukres.2010.08.014. [61] Kanitakis J. Charcot-Leyden crystals in Pemphigus vegetans[J]. J Cutan Pathol, 1987, 14(2): 127. [62] Kumar PV, Mousavi A, Karimi M, et al. Fine needle aspiration of Langerhans cell Histiocytosis of the lymph nodes. A report of six cases[J]. Acta Cytol, 2002, 46(4): 753-756. doi:10.1159/000326991 [63] De Re V, Simula M P, Caggiari L, et al. Proteins specifically hyperexpressed in a coeliac disease patient with aberrant T cells[J]. Clin Exp Immunol,2007,148(3):402-409. doi: 10.1111/j.1365-2249.2007.03348.x. [64] 李华斌,赖玉婷,姜文秀. 慢性鼻窦炎的内表型研究进展及精准治疗[J]. 山东大学耳鼻喉眼学报,2019,33(3):9-13. doi:10.6040/j.issn.1673-3770.1.2018.043 LI Huabin, LAI Yuting, JIANG Wenxiu. Endotypes and precision medicine in chronic sinusitis treatment[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(3):9-13. doi:10.6040/j.issn.1673-3770.1.2018.043. |
[1] | 梁旭,史丽. 慢性鼻窦炎生物靶向药物治疗的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 30-35. |
[2] | 宜若男,陈福权. 嗜酸性粒细胞与嗅觉功能障碍[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 50-55. |
[3] | 谷钰,万鑫,肖自安. 中性粒细胞和嗜酸性粒细胞在慢性鼻窦炎中的相互影响及临床治疗思考[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 56-63. |
[4] | 梁旭,金鹏,赵莉,于克娜,訾晓雪,袁光美,臧以冉,张勤勤,张海令,史丽,张红萍. 鼻呼出一氧化氮对慢性鼻窦炎诊断的临床应用价值[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 181-188. |
[5] | 万霞,孔勇刚,陈始明,华红利,魏媛媛,曾曼丽. 嗜酸性粒细胞与非嗜酸性粒细胞慢性鼻-鼻窦炎患者鼻窦CT特征比较[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 275-280. |
[6] | 林小燕,李静,马志祺,李依琳,高馨怡,李勇. 益生菌治疗变应性鼻炎的临床疗效及抗变态反应作用Meta分析[J]. 山东大学耳鼻喉眼学报, 2021, 35(3): 70-80. |
[7] | 慕婷婷,杨玉娟,张宇,宋西成. IL-36在慢性鼻-鼻窦炎伴鼻息肉中的研究进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(1): 114-118. |
[8] | 陶丹丹,董红军,褚云锋,黄超,胡磊. 慢性鼻-鼻窦炎伴鼻息肉患者组织嗜酸性粒细胞与嗅觉功能障碍的相关性研究[J]. 山东大学耳鼻喉眼学报, 2020, 34(6): 16-20. |
[9] | 田秋实,胡文婷,逄明杰. 变应性鼻炎鼻分泌物嗜酸性粒细胞与肺功能相关性研究[J]. 山东大学耳鼻喉眼学报, 2019, 33(6): 52-55. |
[10] | 黄凯丰. 糖皮质激素短疗程雾化吸入对嗜酸粒细胞性鼻窦炎伴鼻息肉患者鼻部症状及肾上腺皮质功能的影响[J]. 山东大学耳鼻喉眼学报, 2018, 32(4): 28-31. |
[11] | 张俐悦,刘金兰,姚东方,李杰恩. IL-31、IL-33及其受体ST2在难治性鼻-鼻窦炎中的表达及意义[J]. 山东大学耳鼻喉眼学报, 2018, 32(3): 37-41. |
[12] | 张劼,龚齐. 不同分型慢性鼻-鼻窦炎患者外周血嗜酸性粒细胞与中性粒细胞百分比及变态反应临床差异性分析[J]. 山东大学耳鼻喉眼学报, 2018, 32(3): 54-57. |
[13] | 张炜,曾昱菡,余先崧. 慢性鼻窦炎手术前后ECP、EGF、IL-6的水平变化及临床意义[J]. 山东大学耳鼻喉眼学报, 2018, 32(3): 63-67. |
[14] | 郅莉莉,宋道亮. 嗜酸性粒细胞及IL5在上颌窦后鼻孔息肉与鼻息肉中表达的差异[J]. 山东大学耳鼻喉眼学报, 2017, 31(4): 43-46. |
[15] | 金成勋,赵雪,刘悦,魏宁,金春顺. Kimura病11例并文献复习[J]. 山东大学耳鼻喉眼学报, 2016, 30(6): 63-66. |
|