山东大学耳鼻喉眼学报 ›› 2022, Vol. 36 ›› Issue (3): 30-35.doi: 10.6040/j.issn.1673-3770.1.2022.572

• 研究进展 • 上一篇    下一篇

慢性鼻窦炎生物靶向药物治疗的研究进展

梁旭,史丽   

  1. 山东大学第二医院 耳鼻咽喉头颈外科, 山东 济南 250033
  • 发布日期:2022-06-15
  • 通讯作者: 史丽. E-mail:shili126126@126.com
  • 基金资助:
    山东省重大科技创新工程项目(2018CXGC1214);中华国际医学交流基金会-2017敏识博览研究基金

Research progress in biologic targeted drug therapy for chronic sinusitis

LIANG XuOverview,SHI Li   

  1. Department of Otorhinolaryngology & Head and Neck Surgery, The Second Hospital of Shandong University, Jinan 250033, Shandong, China
  • Published:2022-06-15

摘要: 慢性鼻窦炎(CRS)是一种鼻腔鼻窦的慢性炎症性疾病,根据其发病机制可分为1型、2型和3型炎症内在型。目前CRS的药物治疗及手术治疗方法均存在发生各种不良反应和并发症的风险,其中部分难治性鼻窦炎虽经适当的药物和手术治疗仍不能取得满意效果并极易复发,严重影响患者的生活质量。生物靶向药物的应用和发展为CRS的治疗提供了一种有效和安全的替代方案。本文着重介绍针对CRS三种炎症内在型的相关细胞因子(包括TNF-α、IL-4、IL-5、IL-13、IgE和IL-17等)的生物靶向药物治疗的研究进展。

关键词: 鼻窦炎, 鼻息肉, 嗜酸性粒细胞, 炎症因子, 生物靶向药物

Abstract: Chronic sinusitis(CRS)is a chronic inflammatory disease of the nasal cavity and sinuses. Based on its pathogenesis, CRS can be divided into type 1, type 2, and type 3 inflammatory intrinsic type. At present, the drug therapy and surgical treatment of CRS have the risk of various adverse reactions and complications; among these cases of refractory sinusitis, some cannot achieve satisfactory results and are prone to recurrence despite appropriate drug and surgical treatment, thus seriously affecting the quality of life of patients. The application and development of biologic targeted drugs provide an effective and safe alternative to the treatment of CRS. This review focuses on the research progress of biologic targeted drug therapy targeting the cytokines associated with the three intrinsic types of CRS inflammation, including TNF-α, IL-4, IL-5, IL-13, IgE, and IL-17.

Key words: Sinusitis, Nasal polyps, Eosinophils, Inflammatory factor, Biologic targeted drug, Treatment

中图分类号: 

  • R765.41
[1] Fokkens WJ, Lund VJ, Hopkins C, et al. European Position Paper on Rhinosinusitis and Nasal Polyps 2020[J]. Rhinology, 2020, 58(Suppl S29):1-464. doi:10.4193/Rhin20.600.
[2] 中华耳鼻咽喉头颈外科杂志编辑委员会鼻科组,中华医学会耳鼻咽喉头颈外科学分会鼻科组.中国慢性鼻窦炎诊断和治疗指南(2018)[J]. 中华耳鼻咽喉头颈外科杂志,2019(2):81-100. doi: 10.3760/cma.j.issn.1673-0860.2019.02.001.
[3] van der Veen J, Seys SF, Timmermans M, et al. Real-life study showing uncontrolled rhinosinusitis after sinus surgery in a tertiary referral centre[J]. Allergy, 2017, 72(2):282-290. doi:10.1111/all.12983.
[4] Deconde AS, Mace JC, Levy J M, et al. Prevalence of polyp recurrence after endoscopic sinus surgery for chronic rhinosinusitis with nasal polyposis[J]. Laryngoscope, 2017, 127(3):550-555. doi:10.1002/lary.26391.
[5] Lou H, Meng Y, Piao Y, et al. Predictive significance of tissue eosinophilia for nasal polyp recurrence in the Chinese population[J]. Am J Rhinol Allergy, 2015, 29(5):350-356. doi:10.2500/ajra.2015.29.4231.
[6] Hox V, Lourijsen E, Jordens A, et al. Benefits and harm of systemic steroids for short- and long-term use in rhinitis and rhinosinusitis: an EAACI position paper[J]. Clin Transl Allergy, 2020, 3(10):1. doi:10.1186/s13601-019-0303-6.
[7] Cao PP, Wang ZC, Schleimer RP, et al. Pathophysiologic mechanisms of chronic rhinosinusitis and their roles in emerging disease endotypes[J]. Ann Allergy Asthma Immunol, 2019, 122(1):33-40. doi:10.1016/j.anai.2018.10.014.
[8] Zhang N, Van Zele T, Perez-Novo C, et al. Different types of T-effector cells orchestrate mucosal inflammation in chronic sinus disease[J]. J Allergy Clin Immunol, 2008, 122(5):961-968. doi:10.1016/j.jaci.2008.07.008.
[9] Michel O, Dinh PH, Doyen V, et al. Anti-TNF inhibits the airways neutrophilic inflammation induced by inhaled endotoxin in human[J]. BMC Pharmacol Toxicol, 2014,3(15):60. doi:10.1186/2050-6511-15-60.
[10] Malaviya R, Laskin JD, Laskin DL. Anti-TNFalpha therapy in inflammatory lung diseases[J]. Pharmacol Ther, 2017, 180:90-98. doi:10.1016/j.pharmthera.2017.06.008.
[11] Winthrop KL. Risk and prevention of tuberculosis and other serious opportunistic infections associated with the inhibition of tumor necrosis factor[J]. Nat Clin Pract Rheumatol, 2006, 2(11):602-610. doi:10.1038/ncprheum0336.
[12] Van Crombruggen K, Zhang N, Gevaert P, et al. Pathogenesis of chronic rhinosinusitis: inflammation[J]. J Allergy Clin Immunol, 2011, 128(4):728-732. doi:10.1016/j.jaci.2011.07.049.
[13] Lan F, Zhang N, Holtappels G, et al. Staphylococcus aureus Induces a Mucosal Type 2 Immune Response via Epithelial Cell-derived Cytokines[J]. Am J Respir Crit Care Med, 2018, 198(4):452-463. doi:10.1164/rccm.201710-2112OC.
[14] Kohanski MA, Workman AD, Patel NN, et al. Solitary chemosensory cells are a primary epithelial source of IL-25 in patients with chronic rhinosinusitis with nasal polyps[J]. J Allergy Clin Immunol, 2018, 142(2):460-469. doi:10.1016/j.jaci.2018.03.019.
[15] Nagarkar DR, Poposki JA, Tan BK, et al. Thymic stromal lymphopoietin activity is increased in nasal polyps of patients with chronic rhinosinusitis[J]. J Allergy Clin Immunol, 2013, 132(3):593-600. doi:10.1016/j.jaci.2013.04.005.
[16] Shaw JL, Fakhri S, Citardi MJ, et al. IL-33-responsive innate lymphoid cells are an important source of IL-13 in chronic rhinosinusitis with nasal polyps[J]. Am J Respir Crit Care Med, 2013, 188(4):432-439. doi:10.1164/rccm.201212-2227OC.
[17] Poposki JA, Klingler AI, Tan BK, et al. Group 2 innate lymphoid cells are elevated and activated in chronic rhinosinusitis with nasal polyps[J]. Immun Inflamm Dis, 2017, 5(3):233-243. doi:10.1002/iid3.161.
[18] Nagarkar DR, Poposki JA, Comeau MR, et al. Airway epithelial cells activate TH2 cytokine production in mast cells through IL-1 and thymic stromal lymphopoietin[J]. J Allergy Clin Immunol, 2012,130(1):225-232. doi:10.1016/j.jaci.2012.04.019.
[19] Cao PP, Zhang YN, Liao B, et al. Increased local IgE production induced by common aeroallergens and phenotypic alteration of mast cells in Chinese eosinophilic, but not non-eosinophilic, chronic rhinosinusitis with nasal polyps[J]. Clin Exp Allergy, 2014, 44(5):690-700. doi:10.1111/cea.12304.
[20] Bachert C, Han JK, Wagenmann M, et al. EUFOREA expert board meeting on uncontrolled severe chronic rhinosinusitis with nasal polyps(CRSwNP)and biologics: Definitions and management[J]. J Allergy Clin Immunol, 2021,147(1):29-36. doi:10.1016/j.jaci.2020.11.013.
[21] Kim H, Ellis AK, Fischer D, et al. Asthma biomarkers in the age of biologics[J]. Allergy Asthma Clin Immunol, 2017, 17(13):48. doi:10.1186/s13223-017-0219-4.
[22] Bachert C, Wagenmann M, Hauser U, et al. IL-5 synthesis is upregulated in human nasal polyp tissue[J]. J Allergy Clin Immunol, 1997, 99(6 Pt 1):837-842. doi:10.1016/s0091-6749(97)80019-x.
[23] Bachert C, Sousa AR, Lund VJ, et al. Reduced need for surgery in severe nasal polyposis with mepolizumab: Randomized trial[J]. J Allergy Clin Immunol, 2017, 140(4):1024-1031. doi:10.1016/j.jaci.2017.05.044.
[24] Gevaert P, Van Bruaene N, Cattaert T, et al. Mepolizumab, a humanized anti-IL-5 mAb, as a treatment option for severe nasal polyposis[J]. J Allergy Clin Immunol, 2011, 128(5):989-995. doi:10.1016/j.jaci.2011.07.056.
[25] Gevaert P, Lang-Loidolt D, Lackner A, et al. Nasal IL-5 levels determine the response to anti-IL-5 treatment in patients with nasal polyps[J]. J Allergy Clin Immunol, 2006,118(5):1133-1141. doi:10.1016/j.jaci.2006.05.031.
[26] Mitchell P, Leigh R. A drug safety review of treating eosinophilic asthma with monoclonal antibodies[J]. Expert Opin Drug Saf, 2019, 18(12):1161-1170. doi:10.1080/14740338.2019.1675634.
[27] Tamechika SY, Isogai S, Maeda S, et al. Improvement of Chronic Rhinosinusitis and Reduction of the Myeloperoxidase-Antineutrophil Cytoplasmic Antibody Titer in a Patient with Eosinophilic Granulomatosis with Polyangiitis by Additional Mepolizumab[J]. Case Rep Rheumatol, 2021, 29:5561762. doi:10.1155/2021/5561762.
[28] Fokkens WJ, Lund V, Bachert C, et al. EUFOREA consensus on biologics for CRSwNP with or without asthma[J]. Allergy, 2019, 74(12):2312-2319. doi:10.1111/all.13875.
[29] Bachert C, Han JK, Desrosiers M, et al. Efficacy and safety of dupilumab in patients with severe chronic rhinosinusitis with nasal polyps(LIBERTY NP SINUS-24 and LIBERTY NP SINUS-52): results from two multicentre, randomised, double-blind, placebo-controlled, parallel-group phase 3 trials[J]. Lancet, 2019, 394(10209):1638-1650. doi:10.1016/S0140-6736(19)31881-1.
[30] Desrosiers M, Mannent LP, Amin N, et al. Dupilumab reduces systemic corticosteroid use and sinonasal surgery rate in CRSwNP[J]. Rhinology, 2021, 59(3):301-311. doi:10.4193/Rhin20.415.
[31] Gevaert P, Calus L, Van Zele T, et al. Omalizumab is effective in allergic and nonallergic patients with nasal polyps and asthma[J]. J Allergy Clin Immunol, 2013, 131(1):110-116. doi:10.1016/j.jaci.2012.07.047.
[32] Pinto JM, Mehta N, Ditineo M, et al. A randomized, double-blind, placebo-controlled trial of anti-IgE for chronic rhinosinusitis[J]. Rhinology, 2010, 48(3):318-324. doi:10.4193/Rhino09.144.
[33] Wu Q, Yuan L, Qiu H, et al. Efficacy and safety of omalizumab in chronic rhinosinusitis with nasal polyps: a systematic review and meta-analysis of randomised controlled trials[J]. BMJ Open, 2021, 11(9):e47344. doi:10.1136/bmjopen-2020-047344.
[34] Bachert C, Zhang L, Gevaert P. Current and future treatment options for adult chronic rhinosinusitis: Focus on nasal polyposis[J]. J Allergy Clin Immunol, 2015, 136(6):1431-1440. doi:10.1016/j.jaci.2015.10.010.
[35] Sel S, Wegmann M, Dicke T, et al. Effective prevention and therapy of experimental allergic asthma using a GATA-3-specific DNAzyme[J]. J Allergy Clin Immunol, 2008, 121(4):910-916. doi:10.1016/j.jaci.2007.12.1175.
[36] Garn H, Renz H. GATA-3-specific DNAzyme - A novel approach for stratified asthma therapy[J]. Eur J Immunol, 2017, 47(1):22-30. doi:10.1002/eji.201646450.
[37] Gauvreau GM, O'Byrne PM, Boulet LP, et al. Effects of an anti-TSLP antibody on allergen-induced asthmatic responses[J]. N Engl J Med, 2014, 370(22):2102-2110. doi:10.1056/NEJMoa1402895.
[38] Shin HW, Kim DK, Park MH, et al. IL-25 as a novel therapeutic target in nasal polyps of patients with chronic rhinosinusitis[J]. J Allergy Clin Immunol, 2015, 135(6):1476-1485. doi:10.1016/j.jaci.2015.01.003.
[39] Teufelberger AR, Nordengrun M, Braun H, et al. The IL-33/ST2 axis is crucial in type 2 airway responses induced by Staphylococcus aureus-derived serine protease-like protein D[J]. J Allergy Clin Immunol, 2018, 141(2):549-559. doi:10.1016/j.jaci.2017.05.004.
[40] Gevaert P, Lang-Loidolt D, Lackner A, et al. Nasal IL-5 levels determine the response to anti-IL-5 treatment in patients with nasal polyps[J]. J Allergy Clin Immunol, 2006, 118(5):1133-1141. doi:10.1016/j.jaci.2006.05.031.
[41] Eidenschenk C, Rutz S, Liesenfeld O, et al. Role of IL-22 in microbial host defense[J]. Curr Top Microbiol Immunol, 2014, 380:213-236. doi:10.1007/978-3-662-43492-5_10.
[42] Nirula A, Nilsen J, Klekotka P, et al. Effect of IL-17 receptor A blockade with brodalumab in inflammatory diseases[J]. Rheumatology(Oxford), 2016, 55(suppl 2):i43-i55.doi:10.1093/rheumatology/kew346.
[43] Busse WW, Holgate S, Kerwin E, et al. Randomized, double-blind, placebo-controlled study of brodalumab, a human anti-IL-17 receptor monoclonal antibody, in moderate to severe asthma[J]. Am J Respir Crit Care Med, 2013, 188(11):1294-1302. doi:10.1164/rccm.201212-2318OC.
[44] Catley MC, Coote J, Bari M, et al. Monoclonal antibodies for the treatment of asthma[J]. Pharmacol Ther, 2011, 132(3):333-351.doi:10.1016/j.pharmthera.2011.09.005.
[45] Legrand F, Cao Y, Wechsler JB, et al. Sialic acid-binding immunoglobulin-like lectin(Siglec)8 in patients with eosinophilic disorders: Receptor expression and targeting using chimeric antibodies[J]. J Allergy Clin Immunol, 2019, 143(6):2227-2237. doi:10.1016/j.jaci.2018.10.066.
[1] 敖天, 程雷. 慢性鼻窦炎伴鼻息肉的内型研究及其指导下的精准控制与治疗[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 7-14.
[2] 熊攀辉,沈暘,杨玉成. 基于表型和内在型的慢性鼻窦炎诊治进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 15-19.
[3] 姚爽,娄鸿飞. 慢性鼻窦炎的内在型研究进展及精准医疗[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 20-29.
[4] 石帅,郑泉,程雷. 度普利尤单抗在慢性鼻窦炎伴鼻息肉治疗中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 36-42.
[5] 王欢,胡俐,余洪猛. 慢性鼻窦炎相关嗅觉功能障碍研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 43-49.
[6] 宜若男,陈福权. 嗜酸性粒细胞与嗅觉功能障碍[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 50-55.
[7] 谷钰,万鑫,肖自安. 中性粒细胞和嗜酸性粒细胞在慢性鼻窦炎中的相互影响及临床治疗思考[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 56-63.
[8] 林海,朱莹,张维天. 慢性鼻窦炎发病中离子通道作用研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 64-70.
[9] 乔新杰,赵玉林. 慢性鼻窦炎中上皮间质转化信号转导通路及其他相关因子的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 71-77.
[10] 黄丹怡,张婷,陈静,张薇. 上皮屏障在慢性鼻窦炎伴鼻息肉中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 78-83.
[11] 李佳倪,朱冬冬,孟粹达. 表观遗传学在慢性鼻窦炎伴鼻息肉发病机制中的作用[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 84-91.
[12] 于龙刚,姜彦. 鼻细菌微生物组与慢性鼻窦炎伴鼻息肉相关性的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 92-97.
[13] 资昊坤,肖旭平,李云秋. 口服糖皮质激素在慢性鼻窦炎伴鼻息肉围手术期的应用现状[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 98-103.
[14] 曹轩,肖旭平,李云秋. 透明质酸在慢性鼻窦炎中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 104-109.
[15] 王娜,柴向斌. 前列腺源性ETS因子在哮喘及鼻黏膜炎性疾病中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 136-141.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 周斌,李滨 . 鼻内窥镜下鼻窦鼻息肉手术75例疗效观察[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 24 -26 .
[2] 张玉光,韩旭光,张华,王旭,徐湘辉 . 改良穿透性角膜移植术治疗真菌性角膜炎[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 94 -95 .
[3] 隆梅辉,何明强,牟艳云,田利健 . 上颌窦炎性肌纤维母细胞瘤1例并文献复习[J]. 山东大学耳鼻喉眼学报, 2008, 22(4): 329 -330 .
[4] 邹 俊,卢 奕,褚仁远 . 体外培养人胚晶状体上皮细胞生长特性的研究[J]. 山东大学耳鼻喉眼学报, 2008, 22(5): 453 -456 .
[5] 夏文清,郑 敏,满晓飞,李建平 . 手法劈核治疗老年性白内障[J]. 山东大学耳鼻喉眼学报, 2008, 22(5): 467 -469 .
[6] 李学昌,王金磊,张玉莉,董文汇,韩在文 . 中药冲洗对鼻黏膜纤毛超微结构的影响[J]. 山东大学耳鼻喉眼学报, 2006, 20(6): 522 -524 .
[7] 康宏建,李晓红,王保安,周 涛 . 重型颅脑损伤患者行气管切开术的意义[J]. 山东大学耳鼻喉眼学报, 2007, 21(3): 234 -236 .
[8] 闫 蕊,朱淋洁 . 翼状胬肉显微手术切除后角膜干细胞移植[J]. 山东大学耳鼻喉眼学报, 2007, 21(3): 243 -244 .
[9] 黄 方,朱从月 . p21、p73及PTEN在头颈部多原发癌中的表达及意义[J]. 山东大学耳鼻喉眼学报, 2007, 21(5): 388 -392 .
[10] 徐豪杰,李学忠,陈成芳,王学海 . 鼻内镜下鼻腔泪囊吻合术17例[J]. 山东大学耳鼻喉眼学报, 2008, 22(2): 132 -134 .