山东大学耳鼻喉眼学报 ›› 2022, Vol. 36 ›› Issue (3): 30-35.doi: 10.6040/j.issn.1673-3770.1.2022.572
梁旭,史丽
LIANG XuOverview,SHI Li
摘要: 慢性鼻窦炎(CRS)是一种鼻腔鼻窦的慢性炎症性疾病,根据其发病机制可分为1型、2型和3型炎症内在型。目前CRS的药物治疗及手术治疗方法均存在发生各种不良反应和并发症的风险,其中部分难治性鼻窦炎虽经适当的药物和手术治疗仍不能取得满意效果并极易复发,严重影响患者的生活质量。生物靶向药物的应用和发展为CRS的治疗提供了一种有效和安全的替代方案。本文着重介绍针对CRS三种炎症内在型的相关细胞因子(包括TNF-α、IL-4、IL-5、IL-13、IgE和IL-17等)的生物靶向药物治疗的研究进展。
中图分类号:
[1] Fokkens WJ, Lund VJ, Hopkins C, et al. European Position Paper on Rhinosinusitis and Nasal Polyps 2020[J]. Rhinology, 2020, 58(Suppl S29):1-464. doi:10.4193/Rhin20.600. [2] 中华耳鼻咽喉头颈外科杂志编辑委员会鼻科组,中华医学会耳鼻咽喉头颈外科学分会鼻科组.中国慢性鼻窦炎诊断和治疗指南(2018)[J]. 中华耳鼻咽喉头颈外科杂志,2019(2):81-100. doi: 10.3760/cma.j.issn.1673-0860.2019.02.001. [3] van der Veen J, Seys SF, Timmermans M, et al. Real-life study showing uncontrolled rhinosinusitis after sinus surgery in a tertiary referral centre[J]. Allergy, 2017, 72(2):282-290. doi:10.1111/all.12983. [4] Deconde AS, Mace JC, Levy J M, et al. Prevalence of polyp recurrence after endoscopic sinus surgery for chronic rhinosinusitis with nasal polyposis[J]. Laryngoscope, 2017, 127(3):550-555. doi:10.1002/lary.26391. [5] Lou H, Meng Y, Piao Y, et al. Predictive significance of tissue eosinophilia for nasal polyp recurrence in the Chinese population[J]. Am J Rhinol Allergy, 2015, 29(5):350-356. doi:10.2500/ajra.2015.29.4231. [6] Hox V, Lourijsen E, Jordens A, et al. Benefits and harm of systemic steroids for short- and long-term use in rhinitis and rhinosinusitis: an EAACI position paper[J]. Clin Transl Allergy, 2020, 3(10):1. doi:10.1186/s13601-019-0303-6. [7] Cao PP, Wang ZC, Schleimer RP, et al. Pathophysiologic mechanisms of chronic rhinosinusitis and their roles in emerging disease endotypes[J]. Ann Allergy Asthma Immunol, 2019, 122(1):33-40. doi:10.1016/j.anai.2018.10.014. [8] Zhang N, Van Zele T, Perez-Novo C, et al. Different types of T-effector cells orchestrate mucosal inflammation in chronic sinus disease[J]. J Allergy Clin Immunol, 2008, 122(5):961-968. doi:10.1016/j.jaci.2008.07.008. [9] Michel O, Dinh PH, Doyen V, et al. Anti-TNF inhibits the airways neutrophilic inflammation induced by inhaled endotoxin in human[J]. BMC Pharmacol Toxicol, 2014,3(15):60. doi:10.1186/2050-6511-15-60. [10] Malaviya R, Laskin JD, Laskin DL. Anti-TNFalpha therapy in inflammatory lung diseases[J]. Pharmacol Ther, 2017, 180:90-98. doi:10.1016/j.pharmthera.2017.06.008. [11] Winthrop KL. Risk and prevention of tuberculosis and other serious opportunistic infections associated with the inhibition of tumor necrosis factor[J]. Nat Clin Pract Rheumatol, 2006, 2(11):602-610. doi:10.1038/ncprheum0336. [12] Van Crombruggen K, Zhang N, Gevaert P, et al. Pathogenesis of chronic rhinosinusitis: inflammation[J]. J Allergy Clin Immunol, 2011, 128(4):728-732. doi:10.1016/j.jaci.2011.07.049. [13] Lan F, Zhang N, Holtappels G, et al. Staphylococcus aureus Induces a Mucosal Type 2 Immune Response via Epithelial Cell-derived Cytokines[J]. Am J Respir Crit Care Med, 2018, 198(4):452-463. doi:10.1164/rccm.201710-2112OC. [14] Kohanski MA, Workman AD, Patel NN, et al. Solitary chemosensory cells are a primary epithelial source of IL-25 in patients with chronic rhinosinusitis with nasal polyps[J]. J Allergy Clin Immunol, 2018, 142(2):460-469. doi:10.1016/j.jaci.2018.03.019. [15] Nagarkar DR, Poposki JA, Tan BK, et al. Thymic stromal lymphopoietin activity is increased in nasal polyps of patients with chronic rhinosinusitis[J]. J Allergy Clin Immunol, 2013, 132(3):593-600. doi:10.1016/j.jaci.2013.04.005. [16] Shaw JL, Fakhri S, Citardi MJ, et al. IL-33-responsive innate lymphoid cells are an important source of IL-13 in chronic rhinosinusitis with nasal polyps[J]. Am J Respir Crit Care Med, 2013, 188(4):432-439. doi:10.1164/rccm.201212-2227OC. [17] Poposki JA, Klingler AI, Tan BK, et al. Group 2 innate lymphoid cells are elevated and activated in chronic rhinosinusitis with nasal polyps[J]. Immun Inflamm Dis, 2017, 5(3):233-243. doi:10.1002/iid3.161. [18] Nagarkar DR, Poposki JA, Comeau MR, et al. Airway epithelial cells activate TH2 cytokine production in mast cells through IL-1 and thymic stromal lymphopoietin[J]. J Allergy Clin Immunol, 2012,130(1):225-232. doi:10.1016/j.jaci.2012.04.019. [19] Cao PP, Zhang YN, Liao B, et al. Increased local IgE production induced by common aeroallergens and phenotypic alteration of mast cells in Chinese eosinophilic, but not non-eosinophilic, chronic rhinosinusitis with nasal polyps[J]. Clin Exp Allergy, 2014, 44(5):690-700. doi:10.1111/cea.12304. [20] Bachert C, Han JK, Wagenmann M, et al. EUFOREA expert board meeting on uncontrolled severe chronic rhinosinusitis with nasal polyps(CRSwNP)and biologics: Definitions and management[J]. J Allergy Clin Immunol, 2021,147(1):29-36. doi:10.1016/j.jaci.2020.11.013. [21] Kim H, Ellis AK, Fischer D, et al. Asthma biomarkers in the age of biologics[J]. Allergy Asthma Clin Immunol, 2017, 17(13):48. doi:10.1186/s13223-017-0219-4. [22] Bachert C, Wagenmann M, Hauser U, et al. IL-5 synthesis is upregulated in human nasal polyp tissue[J]. J Allergy Clin Immunol, 1997, 99(6 Pt 1):837-842. doi:10.1016/s0091-6749(97)80019-x. [23] Bachert C, Sousa AR, Lund VJ, et al. Reduced need for surgery in severe nasal polyposis with mepolizumab: Randomized trial[J]. J Allergy Clin Immunol, 2017, 140(4):1024-1031. doi:10.1016/j.jaci.2017.05.044. [24] Gevaert P, Van Bruaene N, Cattaert T, et al. Mepolizumab, a humanized anti-IL-5 mAb, as a treatment option for severe nasal polyposis[J]. J Allergy Clin Immunol, 2011, 128(5):989-995. doi:10.1016/j.jaci.2011.07.056. [25] Gevaert P, Lang-Loidolt D, Lackner A, et al. Nasal IL-5 levels determine the response to anti-IL-5 treatment in patients with nasal polyps[J]. J Allergy Clin Immunol, 2006,118(5):1133-1141. doi:10.1016/j.jaci.2006.05.031. [26] Mitchell P, Leigh R. A drug safety review of treating eosinophilic asthma with monoclonal antibodies[J]. Expert Opin Drug Saf, 2019, 18(12):1161-1170. doi:10.1080/14740338.2019.1675634. [27] Tamechika SY, Isogai S, Maeda S, et al. Improvement of Chronic Rhinosinusitis and Reduction of the Myeloperoxidase-Antineutrophil Cytoplasmic Antibody Titer in a Patient with Eosinophilic Granulomatosis with Polyangiitis by Additional Mepolizumab[J]. Case Rep Rheumatol, 2021, 29:5561762. doi:10.1155/2021/5561762. [28] Fokkens WJ, Lund V, Bachert C, et al. EUFOREA consensus on biologics for CRSwNP with or without asthma[J]. Allergy, 2019, 74(12):2312-2319. doi:10.1111/all.13875. [29] Bachert C, Han JK, Desrosiers M, et al. Efficacy and safety of dupilumab in patients with severe chronic rhinosinusitis with nasal polyps(LIBERTY NP SINUS-24 and LIBERTY NP SINUS-52): results from two multicentre, randomised, double-blind, placebo-controlled, parallel-group phase 3 trials[J]. Lancet, 2019, 394(10209):1638-1650. doi:10.1016/S0140-6736(19)31881-1. [30] Desrosiers M, Mannent LP, Amin N, et al. Dupilumab reduces systemic corticosteroid use and sinonasal surgery rate in CRSwNP[J]. Rhinology, 2021, 59(3):301-311. doi:10.4193/Rhin20.415. [31] Gevaert P, Calus L, Van Zele T, et al. Omalizumab is effective in allergic and nonallergic patients with nasal polyps and asthma[J]. J Allergy Clin Immunol, 2013, 131(1):110-116. doi:10.1016/j.jaci.2012.07.047. [32] Pinto JM, Mehta N, Ditineo M, et al. A randomized, double-blind, placebo-controlled trial of anti-IgE for chronic rhinosinusitis[J]. Rhinology, 2010, 48(3):318-324. doi:10.4193/Rhino09.144. [33] Wu Q, Yuan L, Qiu H, et al. Efficacy and safety of omalizumab in chronic rhinosinusitis with nasal polyps: a systematic review and meta-analysis of randomised controlled trials[J]. BMJ Open, 2021, 11(9):e47344. doi:10.1136/bmjopen-2020-047344. [34] Bachert C, Zhang L, Gevaert P. Current and future treatment options for adult chronic rhinosinusitis: Focus on nasal polyposis[J]. J Allergy Clin Immunol, 2015, 136(6):1431-1440. doi:10.1016/j.jaci.2015.10.010. [35] Sel S, Wegmann M, Dicke T, et al. Effective prevention and therapy of experimental allergic asthma using a GATA-3-specific DNAzyme[J]. J Allergy Clin Immunol, 2008, 121(4):910-916. doi:10.1016/j.jaci.2007.12.1175. [36] Garn H, Renz H. GATA-3-specific DNAzyme - A novel approach for stratified asthma therapy[J]. Eur J Immunol, 2017, 47(1):22-30. doi:10.1002/eji.201646450. [37] Gauvreau GM, O'Byrne PM, Boulet LP, et al. Effects of an anti-TSLP antibody on allergen-induced asthmatic responses[J]. N Engl J Med, 2014, 370(22):2102-2110. doi:10.1056/NEJMoa1402895. [38] Shin HW, Kim DK, Park MH, et al. IL-25 as a novel therapeutic target in nasal polyps of patients with chronic rhinosinusitis[J]. J Allergy Clin Immunol, 2015, 135(6):1476-1485. doi:10.1016/j.jaci.2015.01.003. [39] Teufelberger AR, Nordengrun M, Braun H, et al. The IL-33/ST2 axis is crucial in type 2 airway responses induced by Staphylococcus aureus-derived serine protease-like protein D[J]. J Allergy Clin Immunol, 2018, 141(2):549-559. doi:10.1016/j.jaci.2017.05.004. [40] Gevaert P, Lang-Loidolt D, Lackner A, et al. Nasal IL-5 levels determine the response to anti-IL-5 treatment in patients with nasal polyps[J]. J Allergy Clin Immunol, 2006, 118(5):1133-1141. doi:10.1016/j.jaci.2006.05.031. [41] Eidenschenk C, Rutz S, Liesenfeld O, et al. Role of IL-22 in microbial host defense[J]. Curr Top Microbiol Immunol, 2014, 380:213-236. doi:10.1007/978-3-662-43492-5_10. [42] Nirula A, Nilsen J, Klekotka P, et al. Effect of IL-17 receptor A blockade with brodalumab in inflammatory diseases[J]. Rheumatology(Oxford), 2016, 55(suppl 2):i43-i55.doi:10.1093/rheumatology/kew346. [43] Busse WW, Holgate S, Kerwin E, et al. Randomized, double-blind, placebo-controlled study of brodalumab, a human anti-IL-17 receptor monoclonal antibody, in moderate to severe asthma[J]. Am J Respir Crit Care Med, 2013, 188(11):1294-1302. doi:10.1164/rccm.201212-2318OC. [44] Catley MC, Coote J, Bari M, et al. Monoclonal antibodies for the treatment of asthma[J]. Pharmacol Ther, 2011, 132(3):333-351.doi:10.1016/j.pharmthera.2011.09.005. [45] Legrand F, Cao Y, Wechsler JB, et al. Sialic acid-binding immunoglobulin-like lectin(Siglec)8 in patients with eosinophilic disorders: Receptor expression and targeting using chimeric antibodies[J]. J Allergy Clin Immunol, 2019, 143(6):2227-2237. doi:10.1016/j.jaci.2018.10.066. |
[1] | 敖天, 程雷. 慢性鼻窦炎伴鼻息肉的内型研究及其指导下的精准控制与治疗[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 7-14. |
[2] | 熊攀辉,沈暘,杨玉成. 基于表型和内在型的慢性鼻窦炎诊治进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 15-19. |
[3] | 姚爽,娄鸿飞. 慢性鼻窦炎的内在型研究进展及精准医疗[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 20-29. |
[4] | 石帅,郑泉,程雷. 度普利尤单抗在慢性鼻窦炎伴鼻息肉治疗中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 36-42. |
[5] | 王欢,胡俐,余洪猛. 慢性鼻窦炎相关嗅觉功能障碍研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 43-49. |
[6] | 宜若男,陈福权. 嗜酸性粒细胞与嗅觉功能障碍[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 50-55. |
[7] | 谷钰,万鑫,肖自安. 中性粒细胞和嗜酸性粒细胞在慢性鼻窦炎中的相互影响及临床治疗思考[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 56-63. |
[8] | 林海,朱莹,张维天. 慢性鼻窦炎发病中离子通道作用研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 64-70. |
[9] | 乔新杰,赵玉林. 慢性鼻窦炎中上皮间质转化信号转导通路及其他相关因子的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 71-77. |
[10] | 黄丹怡,张婷,陈静,张薇. 上皮屏障在慢性鼻窦炎伴鼻息肉中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 78-83. |
[11] | 李佳倪,朱冬冬,孟粹达. 表观遗传学在慢性鼻窦炎伴鼻息肉发病机制中的作用[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 84-91. |
[12] | 于龙刚,姜彦. 鼻细菌微生物组与慢性鼻窦炎伴鼻息肉相关性的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 92-97. |
[13] | 资昊坤,肖旭平,李云秋. 口服糖皮质激素在慢性鼻窦炎伴鼻息肉围手术期的应用现状[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 98-103. |
[14] | 曹轩,肖旭平,李云秋. 透明质酸在慢性鼻窦炎中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 104-109. |
[15] | 王娜,柴向斌. 前列腺源性ETS因子在哮喘及鼻黏膜炎性疾病中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 136-141. |
|