山东大学耳鼻喉眼学报 ›› 2021, Vol. 35 ›› Issue (6): 125-131.doi: 10.6040/j.issn.1673-3770.0.2021.026

• • 上一篇    下一篇

基于机器学习的人工智能技术在耳鼻喉科临床诊疗中的应用进展

王迪,程金章,于丹   

  1. 吉林大学第二医院 耳鼻咽喉头颈外科, 吉林 长春 130041
  • 发布日期:2021-12-10
  • 通讯作者: 于丹. E-mail:yudan19792003@163.com

Application of artificial intelligence based on machine learning in clinical diagnosis and treatment in otolaryngology

WANG Di, CHENG Jinzhang,YU Dan   

  1. Department of Otorhinolaryngology & Head and Neck Surgery, the Second Hospital of Jilin University, Changchun 130041, Jilin, China
  • Published:2021-12-10

摘要: 人工智能(AI)为计算机科学分支,现已应用于各个领域,其作用得以充分显现。在医学领域,AI正改变着传统的医疗模式,未来必将成为人类医疗发展的方向。机器学习为实现AI技术的重要方法,目前广泛应用于临床数据深度挖掘、影像组学特征分析、疾病预测模型建立等相关领域,在临床诊断、治疗及预后方面起到重要辅助作用。在耳鼻喉科领域,具体有图像分析与分类、语音信号处理、构建各类临床模型等方面以辅助医疗决策,认知与了解基于机器学习的AI技术,并合理应用于临床,才能最大化发挥其作用。鉴于此,本文将简要介绍人工智能的概念及在医学领域的应用现状,重点阐述基于机器学习的AI技术在耳鼻喉科相关疾病临床诊疗中应用进展,为耳鼻喉科医师临床诊疗提供参考。

关键词: 人工智能, 机器学习, 深度学习, 耳鼻喉科

Abstract: Artificial intelligence(AI)is a branch of computer science, which has been applied in various fields, and its role has been fully demonstrated. In the field of medicine, AI is changing the traditional medical model, and will become the direction of human medical development in the future. Machine learning is an important method to realize AI technology. At present, it is widely used in clinical data deep mining, imageomics feature analysis, disease prediction model building and other related aspects,and it plays an important auxiliary role in clinical diagnosis, treatment and prognosis. In the field of Otolaryngology, there are image analysis and classification, voice signal processing,construction of various disease prediction models to assist medical decision-making. Only by recognizing and understanding the AI technology based on machine learning, and applying it in clinic, can we maximize its effect. In view of this, this paper will briefly introduce the concept of artificial intelligence and its application status in the medical field, focusing on the application progress of AI technology based on machine learning in the clinical diagnosis and treatment of Otolaryngology related diseases, so as to provide reference for otolaryngologists in clinical diagnosis and treatment

Key words: Artificial Intelligence, Machine Learning, Deep Learning, Otolaryngology

中图分类号: 

  • R762
[1] Amisha, Malik P, Pathania M, et al.Overview of artificial intelligence in medicine[J]. J Fam Med Prim Care, 2019,8(7): 2328-2331. doi:10.4103/jfmpc.jfmpc_440_19.
[2] Krittanawong C, Zhang H J, Wang Z, et al. Artificial intelligence in precision cardiovascular medicine[J]. J Am Coll Cardiol,2017, 69(21): 2657-2664. doi: 10.1016/j.jacc.2017.03.571.
[3] He J, Baxter SL, Xu J, et al. The practical implementation of artificial intelligence technologies in medicine[J]. Nat Med, 2019, 25(1): 30-36. doi: 10.1038/s41591-018-0307-0.
[4] Crowson MG, Ranisau J, Eskander A, et al. A Contemporary Review of Machine Learning in Otolaryngology-Head and Neck Surgery[J]. Laryngoscope, 2020, 130(1): 45-51. doi: 10.1002/lary.27850.
[5] Jiang F, Jiang Y, Zhi H, et al. Artificial intelligence in healthcare: past, present and future[J]. Stroke Vasc Neurol, 2017, 2(4): 230-243. doi:10.1136/svn-2017-000101.
[6] Tama BA, Kim DH, Kim G, et al. Recent advances in the application of artificial intelligence in otorhinolaryngology-head and neck surgery[J]. Clin Exp Otorhinolaryngol, 2020, 13(4): 326-339. doi:10.21053/ceo.2020.00654.
[7] Liu GS, Zhu MH, Kim J, et al. ELHnet: a convolutional neural network for classifying cochlear endolymphatic Hydrops imaged with optical coherence tomography[J]. Biomed Opt Express, 2017, 8(10): 4579-4594. doi:10.1364/BOE.8.004579.
[8] Chowdhury NI, Smith TL, Chandra RK, et al. Automated classification of osteomeatal complex inflammation on computed tomography using convolutional neural networks[J]. Int Forum Allergy Rhinol, 2019, 9(1): 46-52. doi:10.1002/alr.22196.
[9] Huang J, Habib AR, Mendis D, et al. An artificial intelligence algorithm that differentiates anterior ethmoidal artery location on sinus computed tomography scans[J]. J Laryngol Otol, 2020, 134(1): 52-55. doi:10.1017/S0022215119002536.
[10] Ren JL, Tian J, Yuan Y, et al. Magnetic resonance imaging based radiomics signature for the preoperative discrimination of stage I-II and III-IV head and neck squamous cell carcinoma[J]. Eur J Radiol, 2018, 106: 1-6. doi:10.1016/j.ejrad.2018.07.002.
[11] Forghani R, Chatterjee A, Reinhold C, et al. Head and neck squamous cell carcinoma: prediction of cervical lymph node metastasis by dual-energy CT texture analysis with machine learning[J]. Eur Radiol, 2019, 29(11): 6172-6181. doi:10.1007/s00330-019-06159-y.
[12] 陈海兵, 卫亚楠, 许晓泉, 等. 基于XGBoost人工智能结合CT构建甲状腺癌颈部淋巴结转移预测模型[J]. 山东大学耳鼻喉眼学报, 2020,34(3): 40-45. doi:10.6040/j.issn.1673-3770.0.2016.377. CHEN Haibing, WEI Yanan, XU Xiaoquan, et al. Prediction of cervical lymph node metastasis in papillary thyroid cancer based on XGBoost artificial intelligence and enhanced computed tomography[J]. J Otolaryngol Ophthalmol Shandong Univ, 2020, 34(3): 40-45. doi:10.6040/j.issn.1673-3770.0.2016.377.
[13] Tran TT, Fang TY, Pham VT, et al. Development of an automatic diagnostic algorithm for pediatric otitis media[J]. Otol Neurotol, 2018, 39(8): 1060-1065. doi:10.1097/MAO.0000000000001897.
[14] Khan MA, Kwon S, Choo J, et al. Automatic detection of tympanic membrane and middle ear infection from oto-endoscopic images via convolutional neural networks[J]. Neural Netw, 2020, 126: 384-394. doi:10.1016/j.neunet.2020.03.023.
[15] Li CF, Jing BZ, Ke LR, et al. Development and validation of an endoscopic images-based deep learning model for detection with nasopharyngeal malignancies[J]. Cancer Commun(Lond), 2018, 38(1): 59. doi:10.1186/s40880-018-0325-9.
[16] Ren JJ, Jing XP, Wang J, et al. Automatic recognition of laryngoscopic images using a deep-learning technique[J]. Laryngoscope, 2020, 130(11): E686-E693. doi:10.1002/lary.28539.
[17] Tamashiro A, Yoshio T, Ishiyama A, et al. Artificial intelligence-based detection of pharyngeal cancer using convolutional neural networks[J]. Dig Endosc, 2020, 32(7): 1057-1065. doi:10.1111/den.13653.
[18] Kuo CFJ, Kao CH, Dlamini S, et al. Laryngopharyngeal reflux image quantization and analysis of its severity[J]. Sci Rep, 2020, 10(1): 1-12. doi:10.1038/s41598-020-67587-1.
[19] Zhang LL, Wu YZ, Zheng B, et al. Rapid histology of laryngeal squamous cell carcinoma with deep-learning based stimulated Raman scattering microscopy[J]. Theranostics, 2019, 9(9): 2541-2554. doi:10.7150/thno.32655.
[20] Halicek M, Dormer JD, Little JV, et al. Hyperspectral imaging of head and neck squamous cell carcinoma for cancer margin detection in surgical specimens from 102 patients using deep learning[J]. Cancers(Basel), 2019, 11(9): E1367. doi:10.3390/cancers11091367.
[21] Fang SH, Tsao Y, Hsiao MJ, et al. Detection of pathological voice using cepstrum vectors: a deep learning approach[J]. J Voice, 2019, 33(5): 634-641. doi:10.1016/j.jvoice.2018.02.003.
[22] Powell ME, Rodriguez Cancio M, Young D, et al. Decoding phonation with artificial intelligence(DeP AI): Proof of concept[J]. Laryngoscope Investig Otolaryngol, 2019, 4(3): 328-334. doi:10.1002/lio2.259.
[23] Kim H, Jeon J, Han YJ, et al. Convolutional neural network classifies pathological voice change in laryngeal cancer with high accuracy[J]. J Clin Med, 2020, 9(11): 3415. doi:10.3390/jcm9113415.
[24] Rameau A. Pilot study for a novel and personalized voice restoration device for patients with laryngectomy[J]. Head Neck, 2020, 42(5): 839-845. doi:10.1002/hed.26057.
[25] Markandeya MN, Abeyratne UR, Hukins C. Overnight airway obstruction severity prediction centered on acoustic properties of smart phone: validation with esophageal pressure[J]. Physiol Meas, 2020, 41(10): 105002. doi:10.1088/1361-6579/abb75f.
[26] Jothi N, Rashid NA, Husain W. Data mining in healthcare-A review[J]. Procedia Comput Sci, 2015, 72: 306-313. doi:10.1016/j.procs.2015.12.145.
[27] 汪志伟, 陆月文, 窦晓辉, 等. 基于人工智能下突发性聋与血清指标的相关因素分析[J]. 临床耳鼻咽喉头颈外科杂志, 2020, 34(11): 977-980. doi:10.13201/j.issn.2096-7993.2020.11.004. WANG Zhiwei, LU Yuewen, DOU Xiaohui, et al. Analysis of related factors between sudden sensorineural hearing loss and serum indices base on artificial intelligence and big data[J]. J Clin Otorhinolaryngol Head Neck Surg, 2020, 34(11): 977-980. doi:10.13201/j.issn.2096-7993.2020.11.004.
[28] 郭宇, 李凤美, 陈雨行, 等. 基于决策树的听力损失致病基因筛查方法[J]. 太赫兹科学与电子信息学报, 2020, 18(4): 703-707. GUO Yu, LI Fengmei, CHEN Yuhang, et al. A method of genetic disease screening for hearing loss based on decision tree[J]. J Terahertz Sci Electron Inf Technol, 2020, 18(4): 703-707.
[29] Wilson MB, Ali SA, Kovatch KJ, et al. Machine learning diagnosis of peritonsillar abscess[J]. Otolaryngol Head Neck Surg, 2019, 161(5): 796-799. doi:10.1177/0194599819868178.
[30] Smith JB, Shew M, Karadaghy OA, et al. Predicting salvage laryngectomy in patients treated with primary nonsurgical therapy for laryngeal squamous cell carcinoma using machine learning[J]. Head Neck, 2020, 42(9): 2330-2339. doi:10.1002/hed.26246.
[31] Mayo CS, Mierzwa M, Moran JM, et al. Combination of a big data analytics resource system with an artificial intelligence algorithm to identify clinically actionable radiation dose thresholds for dysphagia in head and neck patients[J]. Adv Radiat Oncol, 2020, 5(6): 1296-1304. doi:10.1016/j.adro.2019.12.007.
[32] Tsui SY, Tsao Y, Lin CW, et al. Demographic and symptomatic features of voice disorders and their potential application in classification using machine learning algorithms[J]. Folia Phoniatr Logop, 2018, 70(3/4): 174-182. doi:10.1159/000492327.
[1] 华红利,李松,陶泽璋. 人工智能在鼻咽癌诊疗中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 113-119.
[2] 黄天泽,陈迪,李莹. 机器学习在眼表疾病诊断及角膜手术中的应用进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(6): 13-19.
[3] 李静静,武欣欣,毛宁,郑桂彬,牟亚魁,初同朋,贾传亮,郑海涛,米佳,宋西成. 基于CT影像组学诺模图术前预测甲状腺乳头状癌颈部中央区淋巴结转移的研究[J]. 山东大学耳鼻喉眼学报, 2021, 35(4): 51-59.
[4] 陈海兵, 卫亚楠, 许晓泉, 陈曦. 基于XGBoost人工智能结合CT构建甲状腺癌颈部淋巴结转移预测模型[J]. 山东大学耳鼻喉眼学报, 2020, 34(3): 40-45.
[5] 朱志玲,李松管国芳. 人工智能在耳鼻咽喉头颈外科的运用及展望[J]. 山东大学耳鼻喉眼学报, 2020, 34(2): 115-120.
[6] 邱昌余,周俊,庄德恩,杨晴,陆美萍,程雷. 人工智能技术在辅助耳鼻咽喉科医师了解过敏性鼻炎患者需求中的应用[J]. 山东大学耳鼻喉眼学报, 2019, 33(3): 88-94.
[7] 郭颖媛,张德军,管国芳,文连姬,张辉,于多娇,马帅帅. 3D打印技术在耳鼻喉科住院医师规范化培训中的应用探索[J]. 山东大学耳鼻喉眼学报, 2017, 31(3): 119-122.
[8] 李丹凤, 陈福权, 石力, 陈俊. 阶梯式多模式融合教学法在耳鼻喉科本科临床教学中的应用[J]. 山东大学耳鼻喉眼学报, 2015, 29(4): 77-79.
[9] 张磊,蔡晓岚,李学忠. 耳鼻喉科临床医师对阻塞性睡眠呼吸暂停低通气综合征的认知度调查[J]. 山东大学耳鼻喉眼学报, 2012, 26(2): 9-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 林彬,王挥戈 . 功能性内镜鼻窦手术后鼻黏膜纤毛转归的研究[J]. 山东大学耳鼻喉眼学报, 2006, 20(6): 481 -487 .
[2] 公 蕾,孙 洁,薛子超,李敬华,薛卫国 . 鼻腔鼻窦恶性肿瘤细胞周期的DNA分析[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 193 -195 .
[3] 陈文文 . 1例T/NK淋巴瘤17年演进[J]. 山东大学耳鼻喉眼学报, 2006, 20(5): 472 -472 .
[4] 栾建刚,梁传余,文艳君,李炯 . 抑制表皮生长因子受体基因表达的pSIREN-ShuttleRNAi表达载体的构建[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 4 -8 .
[5] 马敬, 钟翠萍 . 手术治疗侵犯翼腭窝的鼻咽纤维血管瘤的方法(附5例报告)[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 30 -32 .
[6] 刘强和,罗香林,耿宛平,陈 晨,雷 迅,刘芳贤,邓 明 . 快速老化小鼠的听功能和耳蜗螺旋神经元的增龄性变化[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 215 -217 .
[7] 郑鹏凌,陈卫国,易笃友,黄清秀,卢 俊 . 耳内镜下吸引清除耳道耵聍55例并文献复习[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 223 -226 .
[8] 马 敬,钟翠萍,严 星,安 飞 . 耳屏软骨修补无残余软骨的鼻中隔穿孔15例[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 246 -247 .
[9] 崔哲洙,严永峰,崔春莲,金顺吉 . 嗜酸性粒细胞在变应性鼻炎合并慢性鼻窦炎的分布特点[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 250 -252 .
[10] 赵鲁新,翟 洪,潘 洁 . 超声乳化吸除联合晶状体植入治疗急性闭角型青光眼伴白内障23例[J]. 山东大学耳鼻喉眼学报, 2008, 22(3): 260 -262 .