山东大学耳鼻喉眼学报 ›› 2021, Vol. 35 ›› Issue (6): 132-137.doi: 10.6040/j.issn.1673-3770.0.2021.096
王俊鑫1,2,孙岩2
WANG Junxin1,2,SUN Yan2
摘要: 上皮间质转化(EMT)是上皮细胞转化为间质细胞的生物学过程,它赋予细胞转移和入侵的能力,与器官纤维化和肿瘤发生发展密切相关。miRNA-29b是一类与EMT过程密切相关的非编码小RNA,直接或间接调控TGF-β/Smad、PI3K/AKT、Wnt/β-catenin等多条信号通路,参与Ⅱ型和Ⅲ型EMT的发展过程,进而延缓器官纤维化进程,调控肿瘤的侵袭转移。针对miRNA-29b的靶向治疗,有望为临床诊断、治疗器官纤维化和肿瘤侵袭转移提供新视角。本文就miRNA-29b通过多条EMT相关信号通路调控器官纤维化和肿瘤侵袭转移过程的研究现状进行综述。
中图分类号:
[1] Yang J, Antin P, Berx G, et al. Guidelines and definitions for research on epithelial-mesenchymal transition[J]. Nat Rev Mol Cell Biol, 2020, 21(6): 341-352. doi:10.1038/s41580-020-0237-9. [2] Kim DH, Xing TS, Yang ZB, et al. Epithelial mesenchymal transition in embryonic development, tissue repair and cancer: a comprehensive overview[J]. J Clin Med, 2017, 7(1): E1. doi:10.3390/jcm7010001. [3] Razali RA, Lokanathan Y, Yazid MD, et al. Modulation of epithelial to mesenchymal transition signaling pathways by olea europaea and its active compounds[J]. Int J Mol Sci, 2019, 20(14). doi: 10.3390/ijms20143492. [4] Lee RC, Feinbaum RL, Ambros V. The c elegans heterochronic gene Lin-4 encodes small RNAs with antisense complementarity to Lin-14[J]. Cell, 1993, 75(5): 843-854. doi:10.1016/0092-8674(93)90529-y. [5] 谢益, 韩锋产. miRNAs与内耳发育和听觉毛细胞凋亡与再生的研究进展[J]. 山东大学耳鼻喉眼学报, 2019,33(2): 126-129. doi: 10.6040/j.issn.1673-3770.0.2018.268. XIE Yi, HAN Fengchan. Role of miRNAs in inner ear development and apoptosis or regeneration of auditory hair cells[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019,33(2): 126-129. doi: 10.6040/j.issn.1673-3770.0.2018.268. [6] Lagos-Quintana M, Rauhut R, Lendeckel W, et al. Identification of novel genes coding for small expressed RNAs[J]. Science, 2001, 294(5543): 853-858. doi:10.1126/science.1064921. [7] Alizadeh M, Safarzadeh A, Beyranvand F, et al. The potential role of miR-29 in health and cancer diagnosis, prognosis, and therapy[J]. J Cell Physiol, 2019, 234(11): 19280-19297. doi:10.1002/jcp.28607. [8] Hanna A, Humeres C, Frangogiannis NG. The role of Smad signaling cascades in cardiac fibrosis[J]. Cell Signal, 2021, 77: 109826. doi:10.1016/j.cellsig.2020.109826. [9] Gu YY, Liu XS, Huang XR, et al. Diverse role of TGF-β in kidney disease[J]. Front Cell Dev Biol, 2020, 8: 123. doi:10.3389/fcell.2020.00123. [10] Ma J, Sanchez-Duffhues G, Goumans MJ, et al. TGF-β-induced endothelial to mesenchymal transition in disease and tissue engineering[J]. Front Cell Dev Biol, 2020, 8: 260. doi:10.3389/fcell.2020.00260. [11] Hu HH, Chen DQ, Wang YN, et al. New insights into TGF-β/Smad signaling in tissue fibrosis[J]. Chem Biol Interact, 2018, 292: 76-83. doi:10.1016/j.cbi.2018.07.008. [12] Yu JW, Duan WJ, Huang XR, et al. MicroRNA-29b inhibits peritoneal fibrosis in a mouse model of peritoneal dialysis[J]. Lab Invest, 2014, 94(9): 978-990. doi:10.1038/labinvest.2014.91. [13] Wang T, Li Y, Chen J, et al. TGF-β1/Smad3 signaling promotes collagen synthesis in pulmonary artery smooth muscle by down-regulating miR-29b[J]. International journal of clinical and experimental pathology, 2018, 11(12): 5592-5601. PMID: 31949646 [14] Zhang Y, Huang XR, Wei LH, et al. miR-29b as a therapeutic agent for angiotensin II-induced cardiac fibrosis by targeting TGF-β/Smad3 signaling[J]. Mol Ther, 2014, 22(5): 974-985. doi:10.1038/mt.2014.25. [15] Li LR, Ren SH, Hao XD, et al. MicroRNA-29b inhibits human vascular smooth muscle cell proliferation via targeting the TGF-β/Smad3 signaling pathway[J]. Exp Ther Med, 2021, 21(5): 492. doi:10.3892/etm.2021.9923. [16] Liang C, Bu S, Fan X. Suppressive effect of microRNA-29b on hepatic stellate cell activation and its crosstalk with TGF-β1/Smad3[J]. Cell Biochem Funct, 2016, 34(5): 326-333. doi:10.1002/cbf.3193. [17] Li JX, Du SH, Sheng XJ, et al. MicroRNA-29b inhibits endometrial fibrosis by regulating the Sp1-TGF-β1/smad-CTGF axis in a rat model[J]. Reprod Sci, 2016, 23(3): 386-394. doi:10.1177/1933719115602768. [18] Guo JD, Lin Q, Shao Y, et al. miR-29b promotes skin wound healing and reduces excessive scar formation by inhibition of the TGF-β1/Smad/CTGF signaling pathway[J]. Can J Physiol Pharmacol, 2017, 95(4): 437-442. doi:10.1139/cjpp-2016-0248. [19] Strippoli R, Moreno-Vicente R, Battistelli C, et al. Molecular Mechanisms Underlying Peritoneal EMT and Fibrosis[J]. Stem Cells Int, 2016. doi: 10.1155/2016/3543678. [20] Li N, Cui JL, Duan XC, et al. Suppression of type I collagen expression by miR-29b via PI3K, Akt, and Sp1 pathway in human tenon's fibroblasts[J]. Invest Ophthalmol Vis Sci, 2012, 53(3): 1670. doi:10.1167/iovs.11-8670. [21] Yu J, Luo HM, Li N, et al. Suppression of type I collagen expression by miR-29b via PI3K, Akt, and Sp1 pathway, part II: an in vivo investigation[J]. Invest Ophthalmol Vis Sci, 2015, 56(10): 6019-6028. doi:10.1167/iovs.15-16558. [22] Wang J, Chu ES, Chen HY, et al. microRNA-29b prevents liver fibrosis by attenuating hepatic stellate cell activation and inducing apoptosis through targeting PI3K/AKT pathway[J]. Oncotarget, 2015, 6(9): 7325-7338. doi:10.18632/oncotarget.2621. [23] Hu HT, Hu S, Xu S, et al. miR-29b regulates Ang II-induced EMT of rat renal tubular epithelial cells via targeting PI3K/AKT signaling pathway[J]. Int J Mol Med, 2018, 42(1): 453-460. doi:10.3892/ijmm.2018.3579. [24] Kumar P, Raeman R, Chopyk DM, et al. Adiponectin inhibits hepatic stellate cell activation by targeting the PTEN/AKT pathway[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(10): 3537-3545. doi:10.1016/j.bbadis.2018.08.012. [25] Yu F, Chen B, Dong P, et al. HOTAIR epigenetically modulates PTEN expression via MicroRNA-29b: a novel mechanism in regulation of liver fibrosis[J]. Mol Ther, 2017, 25(1): 205-217. doi:10.1016/j.ymthe.2016.10.015. [26] Zuo YY, Liu YH. New insights into the role and mechanism of Wnt/β-catenin signalling in kidney fibrosis[J]. Nephrology(Carlton), 2018, 23(4): 38-43. doi:10.1111/nep.13472. [27] Wang YC, Liu JS, Chen JY, et al. MiR-29 mediates TGFβ 1-induced extracellular matrix synthesis through activation of Wnt/β -catenin pathway in human pulmonary fibroblasts[J]. Technol Health Care, 2015, 23(1): S119-S125. doi:10.3233/thc-150943. [28] Zhang H, Chen J, Shen ZY, et al. Indoxyl sulfate accelerates vascular smooth muscle cell calcification via microRNA-29b dependent regulation of Wnt/β-catenin signaling[J]. Toxicol Lett, 2018, 284: 29-36. doi:10.1016/j.toxlet.2017.11.033. [29] Ding DY, Li CF, Zhao TC, et al. LncRNA H19/miR-29b-3p/PGRN axis promoted epithelial-mesenchymal transition of colorectal cancer cells by acting on wnt signaling[J]. Mol Cells, 2018, 41(5): 423-435. doi:10.14348/molcells.2018.2258. [30] Liu W, Ruan T, Ji X, et al. The Gli1-Snail axis contributes to Salmonella Typhimurium-induced disruption of intercellular junctions of intestinal epithelial cells[J]. Cell Microbiol, 2020, 22(8): e13211. doi:10.1111/cmi.13211. [31] Cui L, Zhang Y, Ge X, et al. Downregulated PEG3 ameliorates cardiac fibrosis and myocardial injury in mice with ischemia/reperfusion through the NF-κB signaling pathway[J]. J Bioenerg Biomembr, 2020, 52(3): 143-154. doi:10.1007/s10863-020-09831-x. [32] Zhang JY, Zeng Y, Chen JW, et al. miR-29a/b cluster suppresses high glucose-induced endothelial-mesenchymal transition in human retinal microvascular endothelial cells by targeting Notch2[J]. Exp Ther Med, 2019, 17(4): 3108-3116. doi:10.3892/etm.2019.7323. [33] Wang Y, Zeng ZS, Guan L, et al. GRHL2 induces liver fibrosis and intestinal mucosal barrier dysfunction in non-alcoholic fatty liver disease via microRNA-200 and the MAPK pathway[J]. J Cell Mol Med, 2020, 24(11): 6107-6119. doi:10.1111/jcmm.15212. [34] Stemmler MP, Eccles RL, Brabletz S, et al. Non-redundant functions of EMT transcription factors[J]. Nat Cell Biol, 2019, 21(1): 102-112. doi:10.1038/s41556-018-0196-y. [35] Shi C, Rao C, Sun C, et al. miR-29s function as tumor suppressors in gliomas by targeting TRAF4 and predict patient prognosis[J]. Cell Death Dis, 2018, 9(11): 1078. doi:10.1038/s41419-018-1092-x. [36] Koshizuka K, Kikkawa N, Hanazawa T, et al. Inhibition of integrin β1-mediated oncogenic signalling by the antitumor microRNA-29 family in head and neck squamous cell carcinoma[J]. Oncotarget, 2018, 9(3): 3663-3676. doi:10.18632/oncotarget.23194. [37] Manikandan M, Deva Magendhra Rao AK, Arunkumar G, et al. Oral squamous cell carcinoma: microRNA expression profiling and integrative analyses for elucidation of tumourigenesis mechanism[J]. Mol Cancer, 2016, 15: 28. doi:10.1186/s12943-016-0512-8. [38] Kurihara-Shimomura M, Sasahira T, Shimomura H, et al. The oncogenic activity of miR-29b-1-5p induces the epithelial-mesenchymal transition in oral squamous cell carcinoma[J]. J Clin Med, 2019, 8(2): 273. doi:10.3390/jcm8020273. [39] Duhachek-Muggy S, Zolkiewska A. ADAM12-L is a direct target of the miR-29 and miR-200 families in breast cancer[J]. BMC Cancer, 2015, 15: 93. doi:10.1186/s12885-015-1108-1. [40] Drago-Ferrante R, Pentimalli F, Carlisi D, et al. Suppressive role exerted by microRNA-29b-1-5p in triple negative breast cancer through SPIN1 regulation[J]. Oncotarget, 2017, 8(17): 28939-28958. doi:10.18632/oncotarget.15960. [41] To SKY, Mak ASC, Eva Fung YM, et al. Β-catenin downregulates Dicer to promote ovarian cancer metastasis[J]. Oncogene, 2017, 36(43): 5927-5938. doi:10.1038/onc.2017.185. [42] Yuan L, Zhou C, Lu YX, et al. IFN-γ-mediated IRF1/miR-29b feedback loop suppresses colorectal cancer cell growth and metastasis by repressing IGF1[J]. Cancer Lett, 2015, 359(1): 136-147. doi:10.1016/j.canlet.2015.01.003. [43] Leng Y, Chen ZX, Ding H, et al. Overexpression of microRNA-29b inhibits epithelial-mesenchymal transition and angiogenesis of colorectal cancer through the ETV4/ERK/EGFR axis[J]. Cancer Cell Int, 2021, 21(1): 17. doi:10.1186/s12935-020-01700-2. [44] Musavi Shenas SMH, Mansoori B, Mohammadi A, et al. SiRNA-mediated silencing of Snail-1 induces apoptosis and alters micro RNA expression in human urinary bladder cancer cell line[J]. Artif Cells Nanomed Biotechnol, 2017, 45(5): 969-974. doi:10.1080/21691401.2016.1198361. [45] Lv M, Zhong ZY, Huang MG, et al. lncRNA H19 regulates epithelial-mesenchymal transition and metastasis of bladder cancer by miR-29b-3p as competing endogenous RNA[J]. Biochim Biophys Acta Mol Cell Res, 2017, 1864(10): 1887-1899. doi:10.1016/j.bbamcr.2017.08.001. |
[1] | 乔新杰,赵玉林. 慢性鼻窦炎中上皮间质转化信号转导通路及其他相关因子的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 71-77. |
[2] | 黄丹怡,张婷,陈静,张薇. 上皮屏障在慢性鼻窦炎伴鼻息肉中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 78-83. |
[3] | 张雅琪,刘慧敏,曹淋曼,王子钰,林旭,李燕萍,薛刚,吴靖芳. MAPK、PI3K-AKT、NF-κB在小鼠过敏性鼻炎中的表达及意义[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 254-259. |
[4] | 王鑫,刘巧平,闫占峰,刘思溟,朱雅静,丁倩,张莹,田媛,张京然. 基于网络药理学探究小青龙汤治疗过敏性鼻炎的作用机制[J]. 山东大学耳鼻喉眼学报, 2021, 35(5): 46-55. |
[5] | 朱正茹张小兵. 高迁移率族蛋白B1与变应性鼻炎的相关性[J]. 山东大学耳鼻喉眼学报, 2020, 34(6): 123-128. |
[6] | 李宏梅,王兰,高照慧,王莹,薛金梅. p-ERK2及ERK2在鼻息肉组织的表达及其意义[J]. 山东大学耳鼻喉眼学报, 2018, 32(3): 42-46. |
[7] | 王慧,温晏,闫丽,于晓明,宁宏. TGF-β1对HLEC发生EMT影响分析[J]. 山东大学耳鼻喉眼学报, 2017, 31(4): 76-79. |
[8] | 王晶,王雪松,薛金梅. 纤毛长度信号通路调节机制的研究进展[J]. 山东大学耳鼻喉眼学报, 2016, 30(2): 98-101. |
[9] | 郭志娟1,李佩华1,张晓雯2. 上皮间质转化状态在内镜治疗慢性鼻窦炎患者预后的预测意义研究[J]. 山东大学耳鼻喉眼学报, 2014, 28(1): 34-38. |
|