山东大学耳鼻喉眼学报 ›› 2022, Vol. 36 ›› Issue (2): 133-138.doi: 10.6040/j.issn.1673-3770.0.2021.078

• • 上一篇    下一篇

阻塞性睡眠呼吸暂停低通气综合征与血脂紊乱关系的研究进展

杨晰珺1,关建2,吴海莺1   

  1. 1. 昆明医科大学第二附属医院 耳鼻咽喉头颈外科, 云南 昆明 650101;
    2. 上海交通大学附属第六人民医院 耳鼻咽喉头颈外科, 上海 200233
  • 发布日期:2022-04-15
  • 通讯作者: 吴海莺. E-mail:smilewhy@126.com
  • 基金资助:
    云南省科技厅-昆明医科大学应用基础研究联合专项[2017FE467(-178)];昆明医科大学2020年硕士研究生创新基金(2020S204)

Research progress on the relationship between obstructive sleep apnea-hypopnea syndrome and dyslipidemia

YANG Xijun1, GUAN Jian2,WU Haiying1   

  1. 1. Department of Otorhinolaryngology & Head and Neck Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, China;
    2. Department of Otorhinolaryngology & Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
  • Published:2022-04-15

摘要: 阻塞性睡眠呼吸暂停低通气综合征是常见的睡眠呼吸障碍疾病之一,与脂代谢紊乱均为影响人类健康的重要慢性疾病。两种疾病联系紧密,均与心脑血管疾病的发展密切相关,危害性极大,故受到广泛关注。就阻塞性睡眠呼吸暂停低通气综合征对血脂紊乱影响可能的病理生理机制和临床相关研究的最新进展进行综述。

关键词: 睡眠呼吸暂停低通气综合征, 血脂紊乱, 间歇缺氧, 睡眠片段化, 脂蛋白

Abstract: Obstructive sleep apnea-hypopnea syndrome(OSAHS)is a common sleep apnea disorder. Both OSAHS and lipid metabolism disorders are important chronic conditions affecting human health, and they are closely related to the development of cardiovascular and cerebrovascular diseases. This article will review the possible pathophysiological mechanisms underlying the effect of OSAHS on dyslipidemia and the progress of related clinical research.

Key words: Sleep apnea-hypopnea syndrome, Dyslipidemia, Intermittent hypoxia, Sleep fragmentation, Lipoproteins

中图分类号: 

  • R766.7
[1] Dempsey JA, Veasey SC, Morgan BJ, et al. Pathophysiology of sleep apnea[J]. Physiol Rev, 2010, 90(1): 47-112. doi:10.1152/physrev.00043.2008.
[2] Benjafield AV, Ayas NT, Eastwood PR, et al. Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis[J]. Lancet Respir Med, 2019, 7(8): 687-698. doi:10.1016/s2213-2600(19)30198-5.
[3] Fu Y, Xia Y, Yi H, et al. Meta-analysis of all-cause and cardiovascular mortality in obstructive sleep apnea with or without continuous positive airway pressure treatment[J]. Sleep Breath, 2017, 21(1): 181-189. doi:10.1007/s11325-016-1393-1.
[4] Murphy AM, Thomas A, Crinion SJ, et al. Intermittent hypoxia in obstructive sleep apnoea mediates insulin resistance through adipose tissue inflammation[J]. Eur Respir J, 2017, 49(4): 160-173. doi:10.1183/13993003.01731-2016.
[5] Newman AB, Nieto FJ, Guidry U, et al. Relation of sleep-disordered breathing to cardiovascular disease risk factors: the Sleep Heart Health Study[J]. Am J Epidemiol, 2001, 154(1): 50-59. doi:10.1093/aje/154.1.50.
[6] Svatikova A, Wolk R, Gami AS, et al. Interactions between obstructive sleep apnea and the metabolic syndrome[J]. Curr Diab Rep, 2005, 5(1): 53-58. doi:10.1007/s11892-005-0068-2.
[7] Trzepizur W, Le Vaillant M, Meslier N, et al. Independent association between nocturnal intermittent hypoxemia and metabolic dyslipidemia[J]. Chest, 2013, 143(6): 1584-1589. doi:10.1378/chest.12-1652.
[8] Perry JC, D'Almeida V, Souza FG, et al. Consequences of subchronic and chronic exposure to intermittent hypoxia and sleep deprivation on cardiovascular risk factors in rats[J]. Respir Physiol Neurobiol, 2007, 156(3): 250-258. doi:10.1016/j.resp.2006.10.004.
[9] Li JG, Savransky V, Nanayakkara A, et al. Hyperlipidemia and lipid peroxidation are dependent on the severity of chronic intermittent hypoxia[J]. J Appl Physiol Bethesda Md, 2007, 102(2): 557-563. doi:10.1152/japplphysiol.01081.2006.
[10] Li JG, Thorne LN, Punjabi NM, et al. Intermittent hypoxia induces hyperlipidemia in lean mice[J]. Circ Res, 2005, 97(7): 698-706. doi:10.1161/01.RES.0000183879.60089.a9.
[11] Li JG, Nanayakkara A, Jun J, et al. Effect of deficiency in SREBP cleavage-activating protein on lipid metabolism during intermittent hypoxia[J]. Physiol Genomics, 2007, 31(2): 273-280. doi:10.1152/physiolgenomics.00082.2007.
[12] Ntambi JM, Miyazaki M. Regulation of stearoyl-CoA desaturases and role in metabolism[J]. Prog Lipid Res, 2004, 43(2): 91-104. doi:10.1016/s0163-7827(03)00039-0.
[13] Li JG, Bosch-Marce M, Nanayakkara A, et al. Altered metabolic responses to intermittent hypoxia in mice with partial deficiency of hypoxia-inducible factor-1alpha[J]. Physiol Genomics, 2006, 25(3): 450-457. doi:10.1152/physiolgenomics.00293.2005.
[14] Savransky V, Jun J, Li JG, et al. Dyslipidemia and atherosclerosis induced by chronic intermittent hypoxia are attenuated by deficiency of stearoyl coenzyme A desaturase[J]. Circ Res, 2008, 103(10): 1173-1180. doi:10.1161/CIRCRESAHA.108.178533.
[15] Choi SH, Ginsberg HN. Increased very low density lipoprotein(VLDL)secretion, hepatic steatosis, and insulin resistance[J]. Trends Endocrinol Metab, 2011, 22(9): 353-363. doi:10.1016/j.tem.2011.04.007.
[16] Jun J, Reinke C, Bedja D, et al. Effect of intermittent hypoxia on atherosclerosis in apolipoprotein E-deficient mice[J]. Atherosclerosis, 2010, 209(2): 381-386. doi:10.1016/j.atherosclerosis.2009.10.017.
[17] Weiszenstein M, Shimoda LA, Koc M, et al. Inhibition of lipolysis ameliorates diabetic phenotype in a mouse model of obstructive sleep apnea[J]. Am J Respir Cell Mol Biol, 2016, 55(2): 299-307. doi:10.1165/rcmb.2015-0315oc.
[18] Xiong YL, Qu Z, Chen N, et al. The local corticotropin-releasing hormone receptor 2 signalling pathway partly mediates hypoxia-induced increases in lipolysis via the cAMP-protein kinase A signalling pathway in white adipose tissue[J]. Mol Cell Endocrinol, 2014, 392(1/2): 106-114. doi:10.1016/j.mce.2014.05.012.
[19] Kirby DA, Pinto JM, Weiss JW, et al. Effects of beta adrenergic receptor blockade on hemodynamic changes associated with obstructive sleep apnea[J]. Physiol Behav, 1995, 58(5): 919-923. doi:10.1016/0031-9384(95)00150-h.
[20] Roberts AC, Butterfield GE, Cymerman A, et al. Acclimatization to 4, 300-m altitude decreases reliance on fat as a substrate[J]. J Appl Physiol(1985), 1996, 81(4): 1762-1771. doi:10.1152/jappl.1996.81.4.1762.
[21] Pilz S, Scharnagl H, Tiran B, et al. Elevated plasma free fatty acids predict sudden cardiac death: a 6.85-year follow-up of 3315 patients after coronary angiography[J]. Eur Heart J, 2007, 28(22): 2763-2769. doi:10.1093/eurheartj/ehm343.
[22] Pulawa LK, Jensen DR, Coates A, et al. Reduction of plasma triglycerides in apolipoprotein C-II transgenic mice overexpressing lipoprotein lipase in muscle[J]. J Lipid Res, 2007, 48(1): 145-151. doi:10.1194/jlr.M600384-JLR200.
[23] Luyster FS, Kip KE, Drumheller OJ, et al. Sleep apnea is related to the atherogenic phenotype, lipoprotein subclass B[J]. J Clin Sleep Med, 2012, 8(2): 155-161. doi:10.5664/jcsm.1768.
[24] Drager LF, Li J, Shin MK, et al. Intermittent hypoxia inhibits clearance of triglyceride-rich lipoproteins and inactivates adipose lipoprotein lipase in a mouse model of sleep apnoea[J]. Eur Heart J, 2012, 33(6): 783-790. doi:10.1093/eurheartj/ehr097.
[25] Yao QL, Shin MK, Jun JC, et al. Effect of chronic intermittent hypoxia on triglyceride uptake in different tissues[J]. J Lipid Res, 2013, 54(4): 1058-1065. doi:10.1194/jlr.M034272.
[26] Ekstedt M, Akerstedt T, Söderström M. Microarousals during sleep are associated with increased levels of lipids, cortisol, and blood pressure[J]. Psychosom Med, 2004, 66(6): 925-931. doi:10.1097/01.psy.0000145821.25453.f7.
[27] Brindley DN, McCann BS, Niaura R, et al. Stress and lipoprotein metabolism: modulators and mechanisms[J]. Metabolism, 1993, 42(9 Suppl 1): 3-15. doi:10.1016/0026-0495(93)90255-m.
[28] Carreras A, Zhang SX, Peris E, et al. Effect of resveratrol on visceral white adipose tissue inflammation and insulin sensitivity in a mouse model of sleep apnea[J]. Int J Obes(Lond), 2015, 39(3): 418-423. doi:10.1038/ijo.2014.181.
[29] Gündüz C, Basoglu OK, Hedner J, et al. Obstructive sleep apnoea independently predicts lipid levels: Data from the European Sleep Apnea Database[J]. Respirology, 2018, 23(12): 1180-1189. doi:10.1111/resp.13372.
[30] Guan J, Yi HL, Zou JY, et al. Distinct severity stages of obstructive sleep apnoea are correlated with unique dyslipidaemia: large-scale observational study[J]. Thorax, 2016, 71(4): 347-355. doi:10.1136/thoraxjnl-2015-207403.
[31] Bikov A, Lazar Z, Horvath P, et al. Association between serum lipid profile and obstructive respiratory events during REM and non-REM sleep[J]. Lung, 2019, 197(4): 443-450. doi:10.1007/s00408-019-00195-7.
[32] Xu HJ, Xia YY, Li XY, et al. Association between obstructive sleep apnea and lipid metabolism during REM and NREM sleep[J]. J Clin Sleep Med, 2020, 16(4): 475-482. doi:10.5664/jcsm.8242.
[33] Tokuda F, Sando Y, Matsui H, et al. Serum levels of adipocytokines, adiponectin and leptin, in patients with obstructive sleep apnea syndrome[J]. Intern Med, 2008, 47(21): 1843-1849. doi:10.2169/internalmedicine.47.1035.
[34] Drager LF, Bortolotto LA, Maki-Nunes C, et al. The incremental role of obstructive sleep apnoea on markers of atherosclerosis in patients with metabolic syndrome[J]. Atherosclerosis, 2010, 208(2): 490-495. doi:10.1016/j.atherosclerosis.2009.08.016.
[35] Qian Y, Yi H, Zou J, et al. Independent association between sleep fragmentation and dyslipidemia in patients with obstructive sleep apnea[J]. Sci Rep, 2016, 6: 26089. doi:10.1038/srep26089.
[36] Zhao X, Li X, Xu H, et al. Relationships between cardiometabolic disorders and obstructive sleep apnea: Implications for cardiovascular disease risk[J]. J Clin Hypertens(Greenwich), 2019, 21(2): 280-290. doi:10.1111/jch.13473.
[37] Trenell MI, Ward JA, Yee BJ, et al. Influence of constant positive airway pressure therapy on lipid storage, muscle metabolism and insulin action in obese patients with severe obstructive sleep apnoea syndrome[J]. Diabetes Obes Metab, 2007, 9(5): 679-687. doi:10.1111/j.1463-1326.2006.00649.x.
[38] Steiropoulos P, Tsara V, Nena E, et al. Effect of continuous positive airway pressure treatment on serum cardiovascular risk factors in patients with obstructive sleep apnea-hypopnea syndrome[J]. Chest, 2007, 132(3): 843-851. doi:10.1378/chest.07-0074.
[39] Börgel J, Sanner BM, Bittlinsky A, et al. Obstructive sleep apnoea and its therapy influence high-density lipoprotein cholesterol serum levels[J]. Eur Respir J, 2006, 27(1): 121-127. doi:10.1183/09031936.06.00131304.
[40] Simon B, Gabor B, Barta I, et al. Effect of 5-year continuous positive airway pressure treatment on the lipid profile of patients with obstructive sleep apnea: a pilot study[J]. J Sleep Res, 2020, 29(2): e12874. doi:10.1111/jsr.12874.
[41] Drager LF, Bortolotto LA, Figueiredo AC, et al. Effects of continuous positive airway pressure on early signs of atherosclerosis in obstructive sleep apnea[J]. Am J Respir Crit Care Med, 2007, 176(7): 706-712. doi:10.1164/rccm.200703-500OC.
[42] Comondore VR, Cheema R, Fox J, et al. The impact of CPAP on cardiovascular biomarkers in minimally symptomatic patients with obstructive sleep apnea: a pilot feasibility randomized crossover trial[J]. Lung, 2009, 187(1): 17-22. doi:10.1007/s00408-008-9115-5.
[43] Phillips CL, Yee BJ, Marshall NS, et al. Continuous positive airway pressure reduces postprandial lipidemia in obstructive sleep apnea: a randomized, placebo-controlled crossover trial[J]. Am J Respir Crit Care Med, 2011, 184(3): 355-361. doi:10.1164/rccm.201102-0316OC.
[44] Xu HJ, Yi HL, Guan J, et al. Effect of continuous positive airway pressure on lipid profile in patients with obstructive sleep apnea syndrome: a meta-analysis of randomized controlled trials[J]. Atherosclerosis, 2014, 234(2): 446-453. doi:10.1016/j.atherosclerosis.2014.03.034.
[45] Lin MT, Lin HH, Lee PL, et al. Beneficial effect of continuous positive airway pressure on lipid profiles in obstructive sleep apnea: a meta-analysis[J]. Schlaf Atmung, 2015, 19(3): 809-817. doi:10.1007/s11325-014-1082-x.
[46] 葛晓辉, 王宁宇, 占小俊, 等. 手术对阻塞性睡眠呼吸暂停低通气综合征患者血脂代谢变化的临床观察[J]. 山东大学耳鼻喉眼学报, 2017,31(1): 27-30. doi: 10.6040/j.issn.1673-3770.0.2016.197. GE Xiaohui, WANG Ningyu, ZHAN Xiaojun, et al. Serum lipid changes in obstructive sleep apnea hypopnea syndrome patients underwent airway surgery[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2017,31(1): 27-30. doi: 10.6040/j.issn.1673-3770.0.2016.197.
[47] Qian YJ, Zou JY, Xu HJ, et al. Association of upper airway surgery and improved cardiovascular biomarkers and risk in OSA[J]. Laryngoscope, 2020, 130(3): 818-824. doi:10.1002/lary.28012.
[1] 韩莹莹,李延忠. 阻塞性睡眠呼吸暂停低通气综合征与亚临床动脉粥样硬化[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 126-132.
[2] 季迪,邓安春. 外科干预对阻塞性睡眠呼吸暂停低通气综合征患者血压影响的系统评价[J]. 山东大学耳鼻喉眼学报, 2020, 34(6): 92-98.
[3] 李晓, 袁英, 李延忠, 王岩, 杨珂, 孙永强, 于学民, 王宁, 王磊. 焦虑抑郁对阻塞性睡眠呼吸暂停低通气综合征患者夜间血压波动的影响[J]. 山东大学耳鼻喉眼学报, 2019, 33(6): 68-71.
[4] 葛晓辉,王宁宇,占小俊,王春燕,王建亭,王辉,郝荣颖,马坤,刘萍,李丽. 手术对阻塞性睡眠呼吸暂停低通气综合征患者血脂代谢变化的临床观察[J]. 山东大学耳鼻喉眼学报, 2017, 31(1): 27-30.
[5] 孙娜,陈晓平. 咽喉反流与耳鼻咽喉科疾病[J]. 山东大学耳鼻喉眼学报, 2016, 30(6): 85-89.
[6] 高天喜,夏翠,闫静,侯瑾,康全清,王正辉,任晓勇. 间歇低氧模型大鼠肝脏组织中IGF-1、IGFBP-3的表达及分析[J]. 山东大学耳鼻喉眼学报, 2016, 30(5): 38-41.
[7] 于青青,唐隽,王跃建. 建立扁桃体腺样体不同手术方式对儿童阻塞性睡眠呼吸暂停低通气综合征疗效的系统评价体系[J]. 山东大学耳鼻喉眼学报, 2016, 30(5): 42-48.
[8] 章榕,王洪洪,余蕾蕾,刘亮,孙建军,李进让,展慕霞. 多导睡眠监测与便携式睡眠监测的临床应用比较[J]. 山东大学耳鼻喉眼学报, 2016, 30(5): 65-67.
[9] 梁小红,李艳, 李翀. 阻塞性睡眠呼吸暂停低通气综合征与成纤维细胞生长因子21[J]. 山东大学耳鼻喉眼学报, 2016, 30(5): 81-84.
[10] 葛星, 吕玲双, 潘铭, 时巧梅, 许建峰, 林友结, 孙雅慧, 神平. 打鼾相关流行病学现状及其影响因素调查研究——以徐州地区为例[J]. 山东大学耳鼻喉眼学报, 2014, 28(5): 10-13.
[11] 梁送民1,郭永伟2,赵霞1. 便携式睡眠监测仪对阻塞性睡眠呼吸暂停综合征的诊断价值[J]. 山东大学耳鼻喉眼学报, 2014, 28(2): 22-25.
[12] 夏春鹏1,林燕辉2,李岩1,李克义1,张彬2. 口腔矫治器治疗对OSAHS患者焦虑抑郁及心理状态影响的研究[J]. 山东大学耳鼻喉眼学报, 2014, 28(2): 29-32.
[13] 罗惠秀,范春涛,邓延华. 阻塞性睡眠呼吸暂停低通气综合征患儿扁桃体腺样体切除术临床疗效分析[J]. 山东大学耳鼻喉眼学报, 2013, 27(4): 17-20.
[14] 杨嵘,宗涛,孙亚男,陆金发. 持续正压通气联合卡托普利、硝苯地平治疗重度阻塞性睡眠呼吸暂停低通气综合征合并高血压疗效观察[J]. 山东大学耳鼻喉眼学报, 2013, 27(3): 10-12.
[15] 谭杰,杨建国,王德生,刘健治,胡晓华,黄建民. 鼻腔扩容术治疗OSAHS疗效分析[J]. 山东大学耳鼻喉眼学报, 2012, 26(6): 10-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 和守盰,陈 斌,殷善开,苏开明,姜 晓 . OSAHS患者UPPP手术前后上气道形态学变化[J]. 山东大学耳鼻喉眼学报, 2008, 22(5): 385 -388 .
[2] 宋西成,张庆泉,夏永宏,刘鲁沂,于鲁欣,王 郜,姜秀良 . 阻塞性睡眠呼吸暂停低通气综合征患者的术后ICU监护[J]. 山东大学耳鼻喉眼学报, 2008, 22(5): 389 -392 .
[3] 薛卫国,孙洁,金铮,石文斌,辛露,林国经,李加耘 . 盐酸左氧氟沙星滴耳液治疗中耳炎的疗效观察[J]. 山东大学耳鼻喉眼学报, 2006, 20(4): 300 -303 .
[4] 张庆泉,李新民,王 强,王有福 . 鼻内镜下犬齿窝径路治疗上颌窦病变[J]. 山东大学耳鼻喉眼学报, 2007, 21(1): 38 -39 .
[5] 董 频,李晓艳,屠理强,孟晴虹,王 桑,谢 晋,姜 彦 . 晚期下咽癌、喉复发癌术后颈部缺损整复组织的选择[J]. 山东大学耳鼻喉眼学报, 2007, 21(5): 385 -387 .
[6] 姜绍红,朱宇宏,王 强,宋西成 . 难治性原发性鼻出血101例[J]. 山东大学耳鼻喉眼学报, 2007, 21(6): 542 -544 .
[7] 王昭迪,时光刚 . 虚拟现实技术在鼻外科的应用[J]. 山东大学耳鼻喉眼学报, 2008, 22(1): 74 -77 .
[8] 雷迅1 ,刘强和1 ,孔中雨1 ,向秋2 ,耿宛平1 ,黄辉3 ,董译元1 ,刘芳贤1
. EGCG对鼻咽癌细胞株裸鼠移植瘤的放疗增敏作用以及对Survivin表达的影响[J]. 山东大学耳鼻喉眼学报, 2009, 23(1): 6 -9 .
[9] 吴世普
. 鼻内镜下联合下鼻道开窗治疗上颌窦真菌球15例[J]. 山东大学耳鼻喉眼学报, 2009, 23(2): 73 -74 .
[10] 刘伟,殷团芳,任基浩. 中耳胆脂瘤的发生及其与细胞凋亡的关系[J]. 山东大学耳鼻喉眼学报, 2010, 24(01): 29 -33 .