山东大学耳鼻喉眼学报 ›› 2022, Vol. 36 ›› Issue (2): 126-132.doi: 10.6040/j.issn.1673-3770.0.2022.011

• • 上一篇    下一篇

阻塞性睡眠呼吸暂停低通气综合征与亚临床动脉粥样硬化

韩莹莹,李延忠   

  1. 山东大学), 山东 济南 250012
  • 发布日期:2022-04-15
  • 通讯作者: 李延忠. E-mail:liyanzhong@sdu.edu.cn
  • 基金资助:
    国家自然科学基金(82000968);山东省自然科学基金(ZR2018MH017,ZR201911030252)

Obstructive sleep apnea hypopnea syndrome and subclinical arteriosclerosis

HAN Yingying,LI Yanzhong   

  1. Department of Otorhinolaryngology, Qilu Hospital of Shandong University / NHC Key Laboratory of Otolaryngology (Shandong University), Jinan 250012, Shandong, China
  • Published:2022-04-15

摘要: 阻塞性睡眠呼吸暂停低通气综合征是心血管疾病的独立危险因素,严重影响患者的生命质量和生存时间,也是可以改变的心血管疾病危险因素之一。动脉粥样硬化是造成心血管疾病的病理基础,而大量研究发现阻塞性睡眠呼吸暂停低通气综合征与亚临床动脉粥样硬化相关,综述阻塞性睡眠呼吸暂停低通气综合征与亚临床动脉粥样硬化的研究进展,并梳理其中发病机制,为阻塞性睡眠呼吸暂停低通气综合征患者动脉粥样硬化的预防和早期干预提供依据。

关键词: 阻塞性睡眠呼吸暂停低通气综合征, 亚临床动脉粥样硬化, 颈动脉内膜中层厚度, 发病机制

Abstract: Objective sleep apnea hypopnea syndrome is an independent risk factor for cardiovascular disease, and seriously affects the quality of life and even survival time of patients. It is one of the modifiable risk factors for cardiovascular disease. Atherosclerosis is involved in the pathogenesis of cardiovascular disorders. While a large number of studies have found that obstructive sleep apnea hypopnea syndrome is associated with subclinical atherosclerosis. Our study aims to understand the clear role of obstructive sleep apnea hypopnea syndrome in subclinical arteriosclerosis, and therefore provide evidence for the prevention and early intervention of atherosclerosis in patients with obstructive sleep apnea hypopnea syndrome.

Key words: Obstructive sleep apnea hypopnea syndrome, Subclinical atherosclerosis, Carotid intima-media thickness, Pathogenesis

中图分类号: 

  • R766.43
[1] Javaheri S, Barbe F, Campos-Rodriguez F, et al. Sleep apnea: types, mechanisms, and clinical cardiovascular consequences[J]. J Am Coll Cardiol, 2017, 69(7): 841-858. doi:10.1016/j.jacc.2016.11.069.
[2] Gottlieb DJ, Punjabi NM. Diagnosis and management of obstructive sleep apnea: a review[J]. JAMA, 2020, 323(14): 1389-1400. doi:10.1001/jama.2020.3514.
[3] Roth GA, Mensah GA, Johnson CO, et al. Global burden of cardiovascular diseases and risk factors, 1990-2019: update from the GBD 2019 study[J]. J Am Coll Cardiol, 2020, 76(25): 2982-3021. doi:10.1016/j.jacc.2020.11.010.
[4] Song DM, Fang GQ, Mao SZ, et al. Selective inhibition of endothelial NF-κB signaling attenuates chronic intermittent hypoxia-induced atherosclerosis in mice[J]. Atherosclerosis, 2018, 270: 68-75. doi:10.1016/j.atherosclerosis.2018.01.027.
[5] Fang GQ, Song DM, Ye XB, et al. Chronic intermittent hypoxia exposure induces atherosclerosis in ApoE knockout mice: role of NF-κB p50[J]. Am J Pathol, 2012, 181(5): 1530-1539. doi:10.1016/j.ajpath.2012.07.024.
[6] Zhou M, Guo BL, Wang YG, et al. The association between obstructive sleep apnea and carotid intima-media thickness: a systematic review and meta-analysis[J]. Angiology, 2017, 68(7): 575-583. doi:10.1177/0003319716665985.
[7] Zhao YY, Javaheri S, Wang R, et al. Associations between sleep apnea and subclinical carotid atherosclerosis: the multi-ethnic study of atherosclerosis[J]. Stroke, 2019, 50(12): 3340-3346. doi:10.1161/STROKEAHA.118.022184.
[8] Souza SP, Santos RB, Santos IS, et al. Obstructive sleep apnea, sleep duration, and associated mediators with carotid intima-media thickness: the ELSA-Brasil study[J]. Arterioscler Thromb Vasc Biol, 2021, 41(4): 1549-1557. doi:10.1161/ATVBAHA.120.315644.
[9] Sforza E, Boissier C, Martin MS, et al. Carotid artery atherosclerosis and sleep disordered breathing in healthy elderly subjects: the Synapse cohort[J]. Sleep Med, 2013, 14(1): 66-70. doi:10.1016/j.sleep.2012.08.016.
[10] Ljunggren M, Lindberg E, Franklin KA, et al. Obstructive sleep apnea during rapid eye movement sleep is associated with early signs of atherosclerosis in women[J]. Sleep, 2018, 41(7). doi:10.1093/sleep/zsy099.
[11] Chen LD, Lin L, Lin XJ, et al. Effect of continuous positive airway pressure on carotid intima-media thickness in patients with obstructive sleep apnea: a meta-analysis[J]. PLoS One, 2017, 12(9): e0184293. doi:10.1371/journal.pone.0184293.
[12] Biswas M, Saba LC, Omerzu T, et al. A review on joint carotid intima-media thickness and plaque area measurement in ultrasound for cardiovascular/stroke risk monitoring: artificial intelligence framework[J]. J Digit Imaging, 2021, 34(3): 581-604. doi:10.1007/s10278-021-00461-2.
[13] Willeit P, Tschiderer L, Allara E, et al. Carotid intima-media thickness progression as surrogate marker for cardiovascular risk: meta-analysis of 119 clinical trials involving 100 667 patients[J]. Circulation, 2020, 142(7): 621-642. doi:10.1161/CIRCULATIONAHA.120.046361.
[14] O'Leary DH, Bots ML. Imaging of atherosclerosis: carotid intima-media thickness[J]. Eur Heart J, 2010, 31(14): 1682-1689. doi:10.1093/eurheartj/ehq185.
[15] Somers VK, Dyken ME, Mark AL, et al. Sympathetic-nerve activity during sleep in normal subjects[J]. N Engl J Med, 1993, 328(5): 303-307. doi:10.1056/nejm199302043280502.
[16] Gilmartin GS, Lynch M, Tamisier R, et al. Chronic intermittent hypoxia in humans during 28 nights results in blood pressure elevation and increased muscle sympathetic nerve activity[J]. Am J Physiol Heart Circ Physiol, 2010, 299(3): H925-H931. doi:10.1152/ajpheart.00253.2009.
[17] Imadojemu VA, Mawji Z, Kunselman A, et al. Sympathetic chemoreflex responses in obstructive sleep apnea and effects of continuous positive airway pressure therapy[J]. Chest, 2007, 131(5): 1406-1413. doi:10.1378/chest.06-2580.
[18] Imadojemu V, Gleeson K, Quraishi S, et al. Impaired vasodilator responses in obstructive sleep apnea are improved with continuous positive airway pressure therapy[J]. Am J Respir Crit Care Med, 2002, 165(7): 950-953. doi:10.1164/ajrccm.165.7.2102003.
[19] Sayk F, Teckentrup C, Becker C, et al. Effects of selective slow-wave sleep deprivation on nocturnal blood pressure dipping and daytime blood pressure regulation[J]. Am J Physiol Regul Integr Comp Physiol, 2010, 298(1): R191-R197. doi:10.1152/ajpregu.00368.2009.
[20] Somers VK, Dyken ME, Skinner JL. Autonomic and hemodynamic responses and interactions during the Mueller maneuver in humans[J]. J Auton Nerv Syst, 1993, 44(2/3): 253-259. doi:10.1016/0165-1838(93)90038-v.
[21] Kohler M, Stradling JR. Mechanisms of vascular damage in obstructive sleep apnea[J]. Nat Rev Cardiol, 2010, 7(12): 677-685. doi:10.1038/nrcardio.2010.145.
[22] Jelic S, le Jemtel TH. Inflammation, oxidative stress, and the vascular endothelium in obstructive sleep apnea[J]. Trends Cardiovasc Med, 2008, 18(7): 253-260. doi:10.1016/j.tcm.2008.11.008.
[23] Cross MD, Mills NL, Al-Abri M, et al. Continuous positive airway pressure improves vascular function in obstructive sleep apnoea/hypopnoea syndrome: a randomised controlled trial[J]. Thorax, 2008, 63(7): 578-583. doi:10.1136/thx.2007.081877.
[24] Knutson AK, Williams AL, Boisvert WA, et al. HIF in the heart: development, metabolism, ischemia, and atherosclerosis[J]. J Clin Invest, 2021, 131(17): e137557. doi:10.1172/JCI137557.
[25] Chang YT, Lin HC, Chang WN, et al. Impact of inflammation and oxidative stress on carotid intima-media thickness in obstructive sleep apnea patients without metabolic syndrome[J]. J Sleep Res, 2017, 26(2): 151-158. doi:10.1111/jsr.12477.
[26] Sofer T, Li RT, Joehanes R, et al. Low oxygen saturation during sleep reduces CD1D and RAB20 expressions that are reversed by CPAP therapy[J]. EBioMedicine, 2020, 56: 102803. doi:10.1016/j.ebiom.2020.102803.
[27] Deeb R, Smeds MR, Bath J, et al. Snoring and carotid artery disease: a new risk factor emerges[J]. Laryngoscope, 2019, 129(1): 265-268. doi:10.1002/lary.27314.
[28] Amatoury J, Howitt L, Wheatley JR, et al. Snoring-related energy transmission to the carotid artery in rabbits[J]. J Appl Physiol(1985), 2006, 100(5): 1547-1553. doi:10.1152/japplphysiol.01439.2005.
[29] Chuang HH, Liu CH, Wang CY, et al. Snoring sound characteristics are associated with common carotid artery profiles in patients with obstructive sleep apnea[J]. Nat Sci Sleep, 2021,13: 1243-1255. doi:10.2147/NSS.S311125.
[30] Floras JS. Sleep apnea and cardiovascular risk[J]. J Cardiol, 2014, 63(1): 3-8. doi:10.1016/j.jjcc.2013.08.009.
[31] Yeghiazarians Y, Jneid H, Tietjens JR, et al. Obstructive sleep apnea and cardiovascular disease: a scientific statement from the American heart association[J]. Circulation, 2021, 144(3): e56-e67. doi:10.1161/CIR.0000000000000988.
[32] Koskinen J, Juonala M, Dwyer T, et al. Impact of lipid measurements in youth in addition to conventional clinic-based risk factors on predicting preclinical atherosclerosis in adulthood: international childhood cardiovascular cohort consortium[J]. Circulation, 2018, 137(12): 1246-1255. doi:10.1161/CIRCULATIONAHA.117.029726.
[33] Raposeiras-Roubin S, Rosselló X, Oliva B, et al. Triglycerides and residual atherosclerotic risk[J]. J Am Coll Cardiol, 2021, 77(24): 3031-3041. doi:10.1016/j.jacc.2021.04.059.
[34] Edgar L, Akbar N, Braithwaite AT, et al. Hyperglycemia induces trained immunity in macrophages and their precursors and promotes atherosclerosis[J]. Circulation, 2021, 144(12): 961-982. doi:10.1161/CIRCULATIONAHA.120.046464.
[35] Aggoun Y, Farpour-Lambert NJ, Marchand LM, et al. Impaired endothelial and smooth muscle functions and arterial stiffness appear before puberty in obese children and are associated with elevated ambulatory blood pressure[J]. Eur Heart J, 2008, 29(6): 792-799. doi:10.1093/eurheartj/ehm633.
[36] Muxfeldt ES. Prevalence of obstructive sleep apnea in refractory hypertension[J]. Hypertension, 2018, 72(3): 592-593. doi:10.1161/hypertensionaha.118.11275.
[37] Gunduz C, Basoglu OK, Hedner J, et al. Hyperlipidaemia prevalence and cholesterol control in obstructive sleep apnoea: data from the European sleep apnea database(ESADA)[J]. J Intern Med, 2019, 286(6): 676-688. doi:10.1111/joim.12952.
[38] Anothaisintawee T, Reutrakul S, van Cauter E, et al. Sleep disturbances compared to traditional risk factors for diabetes development: systematic review and meta-analysis[J]. Sleep Med Rev, 2016, 30: 11-24. doi:10.1016/j.smrv.2015.10.002.
[39] Kim J, Mohler ER, Keenan BT, et al. Carotid artery wall thickness in obese and nonobese adults with obstructive sleep apnea before and following positive airway pressure treatment[J]. Sleep, 2017, 40(9): zsx126. doi:10.1093/sleep/zsx126.
[40] Theodoropoulos K, Lykouras D, Karkoulias K, et al. Association between the severity of newly diagnosed obstructive sleep apnea and subclinical carotid atherosclerosis in patients without overt cardiovascular disease[J]. Eur Rev Med Pharmacol Sci, 2017, 21(7): 1568-1575. PMID: 28429349.
[41] Hao ZL, Qin L, Tong JY, et al. The differences of carotid atherosclerosis among non-OSAHS and OSAHS patients of different severities: a cross-sectional study[J]. Sleep Breath, 2021, 25(2): 639-648. doi:10.1007/s11325-020-02145-7.
[42] Argyris AA, Mouziouras D, Samara S, et al. Superiority of 24-hour aortic over 24-hour brachial pressure to associate with carotid arterial damage on the basis of pressure amplification variability: the SAFAR study[J]. Hypertension, 2022, 79(3): 648-658. doi:10.1161/hypertensionaha.121.17906.
[43] Kario K, Hettrick DA, Prejbisz A, et al. Obstructive sleep apnea-induced neurogenic nocturnal hypertension: a potential role of renal denervation? [J]. Hypertension, 2021, 77(4): 1047-1060. doi:10.1161/HYPERTENSIONAHA.120.16378.
[44] Oscullo G, Sapiña-Beltrán E, Torres G, et al. The potential role of obstructive sleep apnoea in refractory hypertension[J]. Curr Hypertens Rep, 2019, 21(8): 57. doi:10.1007/s11906-019-0963-6.
[45] Drager LF, Bortolotto LA, Krieger EM, et al. Additive effects of obstructive sleep apnea and hypertension on early markers of carotid atherosclerosis[J]. Hypertension, 2009, 53(1): 64-69. doi:10.1161/HYPERTENSIONAHA.108.119420.
[46] Somuncu MU, Karakurt ST, Karakurt H, et al. The additive effects of OSA and nondipping status on early markers of subclinical atherosclerosis in normotensive patients: a cross-sectional study[J]. Hypertens Res, 2019, 42(2): 195-203. doi:10.1038/s41440-018-0143-0.
[47] He LR, Liao X, Zhu GF, et al. miR-126a-3p targets HIF-1α and alleviates obstructive sleep apnea syndrome with hypertension[J]. Hum Cell, 2020, 33(4): 1036-1045. doi:10.1007/s13577-020-00404-z.
[48] Tokgozoglu L, Orringer C, Ginsberg HN, et al. The year in cardiovascular medicine 2021: dyslipidaemia[J]. Eur Heart J, 2022, 43(8): 807-817. doi:10.1093/eurheartj/ehab875.
[49] Drager LF, Tavoni TM, Silva VM, et al. Obstructive sleep apnea and effects of continuous positive airway pressure on triglyceride-rich lipoprotein metabolism[J]. J Lipid Res, 2018, 59(6): 1027-1033. doi:10.1194/jlr.M083436.
[50] Simon, B, Barta I, Gabor B, et al. Effect of 5-year continuous positive airway pressure treatment on MMPs and TIMPs: implications for OSA comorbidities[J]. Scientific reports, 2020. 10(1): 8609. doi:10.1038/s41598-020-65029-6.
[51] Ntambi JM, Miyazaki M. Regulation of stearoyl-CoA desaturases and role in metabolism[J]. Prog Lipid Res, 2004, 43(2): 91-104. doi:10.1016/S0163-7827(03)00039-0.
[52] Drager LF, Li JG, Shin MK, et al. Intermittent hypoxia inhibits clearance of triglyceride-rich lipoproteins and inactivates adipose lipoprotein lipase in a mouse model of sleep apnoea[J]. Eur Heart J, 2012, 33(6): 783-790. doi:10.1093/eurheartj/ehr097.
[53] Li J, Thorne LN, Punjabi NM, et al. Intermittent hypoxia induces hyperlipidemia in lean mice[J]. Circ Res, 2005, 97(7): 698-706. doi:10.1161/01.res.0000183879.60089.a9.
[54] Drager LF, Yao QL, Hernandez KL, et al. Chronic intermittent hypoxia induces atherosclerosis via activation of adipose angiopoietin-like 4[J]. Am J Respir Crit Care Med, 2013, 188(2): 240-248. doi:10.1164/rccm.201209-1688OC.
[55] Tang JJ, Li GX, Liu ZG, et al. Danlou Tablet improves chronic intermittent hypoxia-induced dyslipidemia and arteriosclerosis by HIF-1 α-Angptl4 mRNA signaling pathway[J]. Chin J Integr Med, 2020. doi:10.1007/s11655-020-3255-8.
[56] Rossello X, Raposeiras-Roubin S, Oliva B, et al. Glycated hemoglobin and subclinical atherosclerosis in people without diabetes[J]. J Am Coll Cardiol, 2021, 77(22): 2777-2791. doi:10.1016/j.jacc.2021.03.335.
[57] Adderley NJ, Subramanian A, Toulis K, et al. Obstructive sleep apnea, a risk factor for cardiovascular and microvascular disease in patients with type 2 diabetes: findings from a population-based cohort study[J]. Diabetes Care, 2020, 43(8): 1868-1877. doi:10.2337/dc19-2116.
[58] Pugliese G, Barrea L, Laudisio D, et al. Sleep apnea, obesity, and disturbed glucose homeostasis: epidemiologic evidence, biologic insights, and therapeutic strategies[J]. Curr Obes Rep, 2020, 9(1): 30-38. doi:10.1007/s13679-020-00369-y.
[59] Bornfeldt KE, Tabas I. Insulin resistance, hyperglycemia, and atherosclerosis[J]. Cell Metab, 2011, 14(5): 575-585. doi:10.1016/j.cmet.2011.07.015.
[60] Perakakis N, Farr OM, Mantzoros CS. Leptin in leanness and obesity: JACC state-of-the-art review[J]. J Am Coll Cardiol, 2021, 77(6): 745-760. doi:10.1016/j.jacc.2020.11.069.
[61] Raman P, Khanal S. Leptin in atherosclerosis: focus on macrophages, endothelial and smooth muscle cells[J]. Int J Mol Sci, 2021, 22(11): 5446. doi:10.3390/ijms22115446.
[62] Biddinger SB, Miyazaki M, Boucher J, et al. Leptin suppresses stearoyl-CoA desaturase 1 by mechanisms independent of insulin and sterol regulatory element-binding protein-1c[J]. Diabetes, 2006, 55(7): 2032-2041. doi:10.2337/db05-0742.
[63] Zhang SY, Dong YQ, Wang PC, et al. Adipocyte-derived lysophosphatidylcholine activates adipocyte and adipose tissue macrophage nod-like receptor protein 3 inflammasomes mediating homocysteine-induced insulin resistance[J]. EBioMedicine, 2018, 31: 202-216. doi:10.1016/j.ebiom.2018.04.022.
[64] Ying W, Fu WX, Lee YS, et al. The role of macrophages in obesity-associated islet inflammation and β-cell abnormalities[J]. Nat Rev Endocrinol, 2020, 16(2): 81-90. doi:10.1038/s41574-019-0286-3.
[1] 林海,朱莹,张维天. 慢性鼻窦炎发病中离子通道作用研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 64-70.
[2] 李佳倪,朱冬冬,孟粹达. 表观遗传学在慢性鼻窦炎伴鼻息肉发病机制中的作用[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 84-91.
[3] 王宇婷王嘉玺. microRNA在过敏性鼻炎发病机制中的研究进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(5): 98-104.
[4] 季迪,邓安春. 外科干预对阻塞性睡眠呼吸暂停低通气综合征患者血压影响的系统评价[J]. 山东大学耳鼻喉眼学报, 2020, 34(6): 92-98.
[5] 向浏岚,叶远航蒋璐云,刘洋. Tim-3在变应性鼻炎中的作用及机制研究进展[J]. 山东大学耳鼻喉眼学报, 2020, 34(6): 118-122.
[6] 朱正茹张小兵. 高迁移率族蛋白B1与变应性鼻炎的相关性[J]. 山东大学耳鼻喉眼学报, 2020, 34(6): 123-128.
[7] 黄嘉莉杨淑荣. 变应性鼻炎中信号传导通路的研究进展[J]. 山东大学耳鼻喉眼学报, 2020, 34(4): 125-129.
[8] 林晓芹吴苗琴. 特发性视网膜前膜的发病机制及治疗进展[J]. 山东大学耳鼻喉眼学报, 2020, 34(2): 121-128.
[9] 李晓, 袁英, 李延忠, 王岩, 杨珂, 孙永强, 于学民, 王宁, 王磊. 焦虑抑郁对阻塞性睡眠呼吸暂停低通气综合征患者夜间血压波动的影响[J]. 山东大学耳鼻喉眼学报, 2019, 33(6): 68-71.
[10] 宋凡,黄炜峻,许华俊,关建,易红良. 阻塞性睡眠呼吸暂停综合征患者颈动脉弹性与氧化应激反应的关系[J]. 山东大学耳鼻喉眼学报, 2019, 33(4): 99-104.
[11] 孙子雯,崔洪玮,孙喜灵,陈晨,张璐,胡竹林. 干眼病的病因、发病机制及治疗进展[J]. 山东大学耳鼻喉眼学报, 2019, 33(2): 159-166.
[12] 张宇,宋西成. 慢性鼻窦炎伴鼻息肉与哮喘的相关性机制及治疗策略研究进展[J]. 山东大学耳鼻喉眼学报, 2019, 33(1): 49-52.
[13] 李华斌, 赖玉婷. 慢性鼻-鼻窦炎的发病机制及诊疗进展[J]. 山东大学耳鼻喉眼学报, 2018, 32(3): 4-9.
[14] 高天喜,夏翠,闫静,侯瑾,康全清,王正辉,任晓勇. 间歇低氧模型大鼠肝脏组织中IGF-1、IGFBP-3的表达及分析[J]. 山东大学耳鼻喉眼学报, 2016, 30(5): 38-41.
[15] 于青青,唐隽,王跃建. 建立扁桃体腺样体不同手术方式对儿童阻塞性睡眠呼吸暂停低通气综合征疗效的系统评价体系[J]. 山东大学耳鼻喉眼学报, 2016, 30(5): 42-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 周斌,李滨 . 鼻内窥镜下鼻窦鼻息肉手术75例疗效观察[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 24 -26 .
[2] 张玉光,韩旭光,张华,王旭,徐湘辉 . 改良穿透性角膜移植术治疗真菌性角膜炎[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 94 -95 .
[3] 隆梅辉,何明强,牟艳云,田利健 . 上颌窦炎性肌纤维母细胞瘤1例并文献复习[J]. 山东大学耳鼻喉眼学报, 2008, 22(4): 329 -330 .
[4] 邹 俊,卢 奕,褚仁远 . 体外培养人胚晶状体上皮细胞生长特性的研究[J]. 山东大学耳鼻喉眼学报, 2008, 22(5): 453 -456 .
[5] 夏文清,郑 敏,满晓飞,李建平 . 手法劈核治疗老年性白内障[J]. 山东大学耳鼻喉眼学报, 2008, 22(5): 467 -469 .
[6] 李学昌,王金磊,张玉莉,董文汇,韩在文 . 中药冲洗对鼻黏膜纤毛超微结构的影响[J]. 山东大学耳鼻喉眼学报, 2006, 20(6): 522 -524 .
[7] 康宏建,李晓红,王保安,周 涛 . 重型颅脑损伤患者行气管切开术的意义[J]. 山东大学耳鼻喉眼学报, 2007, 21(3): 234 -236 .
[8] 闫 蕊,朱淋洁 . 翼状胬肉显微手术切除后角膜干细胞移植[J]. 山东大学耳鼻喉眼学报, 2007, 21(3): 243 -244 .
[9] 黄 方,朱从月 . p21、p73及PTEN在头颈部多原发癌中的表达及意义[J]. 山东大学耳鼻喉眼学报, 2007, 21(5): 388 -392 .
[10] 徐豪杰,李学忠,陈成芳,王学海 . 鼻内镜下鼻腔泪囊吻合术17例[J]. 山东大学耳鼻喉眼学报, 2008, 22(2): 132 -134 .