山东大学耳鼻喉眼学报 ›› 2022, Vol. 36 ›› Issue (3): 71-77.doi: 10.6040/j.issn.1673-3770.0.2021.581
乔新杰,赵玉林
QIAO XinjieOverview
摘要: 慢性鼻窦炎是多种因素导致的鼻腔鼻窦黏膜慢性炎症性疾病。其发病机制及其病理生理过程尚不明确。上皮间质转化是鼻窦黏膜组织重塑的重要环节,而组织重塑在慢性鼻窦炎发生、发展中起到重要作用。现有的研究表明不同类型的慢性鼻窦炎发生上皮间质转化的特点存在差异。现将近年来慢性鼻窦炎黏膜上皮间质转化相关信号转导通路的研究进展及一些其他相关因子的研究作一综述。
中图分类号:
[1] 周梦夏, 孙作珩, 查旭东, 等. 基质金属蛋白酶及抑制剂影响细胞外基质代谢参与慢性鼻-鼻窦炎组织重塑的机制研究[J]. 中国耳鼻咽喉颅底外科杂志, 2020, 26(6): 717-720. doi:10.11798/j.issn.1007-1520.202006025. ZHOU Mengxia, SUN Zuoheng, ZHA Xudong, et al. Advances in the mechanism of matrix metalloproteinases and inhibitors affecting extracellular matrix metabolism and participating in CRS tissue remodeling[J]. Chinese Journal of Otorhinolaryngology-Skull Base Surgery, 2020, 26(6): 717-720. doi:10.11798/j.issn.1007-1520.202006025. [2] 中华耳鼻咽喉头颈外科杂志编辑委员会鼻科组, 中华医学会耳鼻咽喉头颈外科学分会鼻科学组. 中国慢性鼻窦炎诊断和治疗指南(2018)[J]. 中华耳鼻咽喉头颈外科杂志, 2019, 54(2): 81-100. doi:10.3760/cma.j.issn.1673-0860.2019.02.001. [3] Lehmann AE, Scangas GA, Bergmark RW, et al. Periostin and inflammatory disease: implications for chronic rhinosinusitis[J]. Otolaryngol Head Neck Surg, 2019, 160(6): 965-973. doi:10.1177/0194599819838782. [4] Fokkens WJ, Lund VJ, Mullol J, et al. EPOS 2012: European position paper on rhinosinusitis and nasal polyps 2012. A summary for otorhinolaryngologists[J]. Rhinology, 2012, 50(1): 1-12. doi:10.4193/Rhino12.000. [5] Fokkens WJ, Lund VJ, Hopkins C, et al. European position paper on rhinosinusitis and nasal polyps 2020[J]. Rhinology, 2020, 58(Suppl S29): 1-464. doi:10.4193/Rhin20.600. [6] Shi JB, Fu QL, Zhang H, et al. Epidemiology of chronic rhinosinusitis: results from a cross-sectional survey in seven Chinese cities[J]. Allergy, 2015, 70(5): 533-539. doi:10.1111/all.12577. [7] 蒋子涵, 孟娟. 慢性鼻窦炎内在型研究进展[J]. 临床耳鼻咽喉头颈外科杂志, 2020, 34(1): 13-18. doi:10.13201/j.issn.1001-1781.2020.01.004. JIANG Zihan, MENG Juan. Advances in the endotypes of chronic rhinosinusitis[J]. Journal of Clinical Otorhinolaryngology Head and Neck Surgery, 2020, 34(1): 13-18. doi:10.13201/j.issn.1001-1781.2020.01.004. [8] Bae JS, Ryu G, Kim JH, et al. Effects of Wnt signaling on epithelial to mesenchymal transition in chronic rhinosinusitis with nasal polyp[J]. Thorax, 2020, 75(11): 982-993. doi:10.1136/thoraxjnl-2019-213916. [9] Ryu G, Mo JH, Shin HW. Epithelial-to-mesenchymal transition in neutrophilic chronic rhinosinusitis[J]. Curr Opin Allergy Clin Immunol, 2020, 21(1): 30-37. doi:10.1097/aci.0000000000000701. [10] Laidlaw TM, Mullol J, Woessner KM, et al. Chronic rhinosinusitis with nasal polyps and asthma[J]. J Allergy Clin Immunol Pract, 2021, 9(3): 1133-1141. doi:10.1016/j.jaip.2020.09.063. [11] Schleimer RP. Immunopathogenesis of chronic rhinosinusitis and nasal polyposis[J]. Annu Rev Pathol, 2017, 12: 331-357. doi:10.1146/annurev-pathol-052016-100401. [12] 徐艳. 金黄色葡萄球菌附属基因调节系统对毒力和耐药性的影响研究进展[J]. 国际儿科学杂志, 2020, 47(1): 1-4. doi:10.3760/cma.j.issn.1673-4408.2020.01.001. XU Yan. Impact of Staphylococcus aureus accessory gene regulator system on virulence and antibiotic resistance[J]. International Journal of Pediatrics, 2020, 47(1): 1-4. doi:10.3760/cma.j.issn.1673-4408.2020.01.001. [13] 吴玉彬, 周兵. 慢性鼻-鼻窦炎患者鼻腔微生物群的研究概况[J]. 国际耳鼻咽喉头颈外科杂志, 2017, 41(2): 80-84, 93. doi:10.3760/cma.j.issn.1673-4106.2017.02.006. WU Yubin, ZHOU Bing. The sinonasal microbiome of chronic rhinosinusitis[J]. International Journal of Otolaryngology-Head and Neck Surgery, 2017, 41(2): 80-84, 93. doi:10.3760/cma.j.issn.1673-4106.2017.02.006. [14] Scherzad A, Hagen R, Hackenberg S. Current understanding of nasal epithelial cell mis-differentiation[J]. J Inflamm Res, 2019, 12: 309-317. doi:10.2147/JIR.S180853. [15] 陈卓, 刘江怡, 陈杰, 等. 上皮细胞在鼻息肉形成和发展中的作用[J]. 临床耳鼻咽喉头颈外科杂志, 2020, 34(11): 1053-1056. doi:10.13201/j.issn.2096-7993.2020.11.024. CHEN Zhuo, LIU Jiangyi, CHEN Jie, et al. The role of epithelial cells in the formation and development of nasal polyps[J]. Journal of Clinical Otorhinolaryngology Head and Neck Surgery, 2020, 34(11): 1053-1056. doi:10.13201/j.issn.2096-7993.2020.11.024. [16] Cheng JZ, Chen JJ, Zhao Y, et al. microRNA-761 suppresses remodeling of nasal mucosa and epithelial-mesenchymal transition in mice with chronic rhinosinusitis through LCN2[J]. Stem Cell Res Ther, 2020, 11(1): 151. doi:10.1186/s13287-020-01598-7. [17] Wang MJ, Sun Y, Li C, et al. Eosinophils correlate with epithelial-mesenchymal transition in chronic rhinosinusitis with nasal polyps[J]. ORL J Otorhinolaryngol Relat Spec, 2022, 84(1): 70-80. doi:10.1159/000516847. [18] Kao SS, Bassiouni A, Ramezanpour M, et al. Scoping review of chronic rhinosinusitis proteomics[J]. Rhinology, 2020, 58(5): 418-429. doi:10.4193/Rhin20.034. [19] Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer[J]. Nat Rev Mol Cell Biol, 2019, 20(2): 69-84. doi:10.1038/s41580-018-0080-4. [20] Zhang Y, Weinberg RA. Epithelial-to-mesenchymal transition in cancer: complexity and opportunities[J]. Front Med, 2018, 12(4): 361-373. doi:10.1007/s11684-018-0656-6. [21] Kagalwalla AF, Akhtar N, Woodruff SA, et al. Eosinophilic esophagitis: epithelial mesenchymal transition contributes to esophageal remodeling and reverses with treatment[J]. J Allergy Clin Immunol, 2012, 129(5): 1387-1396.e7. doi:10.1016/j.jaci.2012.03.005. [22] 高云博, 张媛, 张罗. 上皮-间质转化与慢性鼻窦炎的研究进展[J]. 中华耳鼻咽喉头颈外科杂志, 2019, 54(3): 231-236. doi:10.3760/cma.j.issn.1673-0860.2019.03.015. GAO Yunbo, ZHANG Yuan, ZHANG Luo. Advance in epithelial-mesenchymal transition in chronic rhinosinusitis[J]. Chinese Journal of Otorhinolaryngology Head and Neck Surgery, 2019, 54(3): 231-236. doi:10.3760/cma.j.issn.1673-0860.2019.03.015. [23] Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition[J]. Nat Rev Mol Cell Biol, 2014, 15(3): 178-196. doi:10.1038/nrm3758. [24] 李艺敏, 谭国静, 江雨, 等. TGF-β1/Smads通路在体外培养的鼻息肉组织重构中的作用[J]. 上海交通大学学报(医学版), 2019, 39(7): 737-743. doi:10.3969/j.issn.1674-8115.2019.07.008. LI Yimin, TAN Guojing, JIANG Yu, et al. Role of TGF-β1/Smads signaling pathway in tissue remodeling of cultured nasal polyps in vitro[J]. Journal of Shanghai Jiao Tong University(Medical Science), 2019, 39(7): 737-743. doi:10.3969/j.issn.1674-8115.2019.07.008. [25] Ikushima H, Miyazono K. TGFbeta signalling: a complex web in cancer progression[J]. Nat Rev Cancer, 2010, 10(6): 415-424. doi:10.1038/nrc2853. [26] 陈希琦, 张晓双, 周永坤, 等. TGF-β1/Smads信号通路在纤维化疾病中的研究进展[J]. 中国中西医结合外科杂志, 2021, 27(2): 351-354. doi:10.3969/j.issn.1007-6948.2021.02.037. [27] Morikawa M, Derynck R, Miyazono K. TGF-β and the TGF-β family: context-dependent roles in cell and tissue physiology[J]. Cold Spring Harb Perspect Biol, 2016, 8(5): a021873. doi:10.1101/cshperspect.a021873. [28] Hu HH, Chen DQ, Wang YN, et al. New insights into TGF-β/Smad signaling in tissue fibrosis[J]. Chem Biol Interact, 2018, 292: 76-83. doi:10.1016/j.cbi.2018.07.008. [29] Hata A, Chen YG. TGF-β signaling from receptors to smads[J]. Cold Spring Harb Perspect Biol, 2016, 8(9): a022061. doi:10.1101/cshperspect.a022061. [30] 张炳煌, 朱旭丽, 高静. 脂氧素A4及脂氧素A4受体在慢性鼻-鼻窦炎上皮-间质转化中的作用[J]. 中国耳鼻咽喉头颈外科, 2021, 28(6): 370-374. doi:10.16066/j.1672-7002.2021.06.012. ZHANG Binghuang, ZHU Xuli, GAO Jing. The effect of lipoxin A4 and lipoxin A4 receptor in the epithelial-mesenchymal transition of chronic rhinosinusitis[J]. Chinese Archives of Otolaryngology-Head and Neck Surgery, 2021, 28(6): 370-374. doi:10.16066/j.1672-7002.2021.06.012. [31] Zhong Y, Li YQ, Zhang H. Silencing TBX1 exerts suppressive effects on epithelial-mesenchymal transition and inflammation of chronic rhinosinusitis through inhibition of the TGFβ-Smad2/3 signaling pathway in mice[J]. Am J Rhinol Allergy, 2020, 34(1): 16-25. doi:10.1177/1945892419866543. [32] Yan B, Wang Y, Li Y, et al. Inhibition of arachidonate 15-lipoxygenase reduces the epithelial-mesenchymal transition in eosinophilic chronic rhinosinusitis with nasal polyps[J]. Int Forum Allergy Rhinol, 2019, 9(3): 270-280. doi:10.1002/alr.22243. [33] Bachert C, Zhang L, Gevaert P. Current and future treatment options for adult chronic rhinosinusitis: focus on nasal polyposis[J]. J Allergy Clin Immunol, 2015, 136(6): 1431-1440. doi:10.1016/j.jaci.2015.10.010. [34] 侯从岭, 雷小婷, 芦晓帆, 等. 黄芩苷对肺癌H460细胞生物学特性及Wnt/β-catenin信号通路的影响[J]. 中国老年学杂志, 2022, 42(2): 426-430. doi:10.3969/j.issn.1005-9202.2022.02.043. [35] 何语欣, 杨兀乂, 严海燕. Wnt信号通路与气管损伤相关性的研究进展[J]. 医学分子生物学杂志, 2021, 18(5): 405-408. doi:10.3870/j.issn.1672-8009.2021.05.014. HE Yuxin, YANG Wuyi, YAN Haiyan. Correlation between Wnt signaling pathway and tracheal injury[J]. Journal of Medical Molecular Biology, 2021, 18(5): 405-408. doi:10.3870/j.issn.1672-8009.2021.05.014. [36] George SJ. Wnt pathway: a new role in regulation of inflammation[J]. Arterioscler Thromb Vasc Biol, 2008, 28(3): 400-402. doi:10.1161/ATVBAHA.107.160952. [37] Bansal K, Trinath J, Chakravortty D, et al. Withdrawal: Pathogen-specific TLR2 protein activation programs macrophages to induce Wnt-β-catenin signaling[J]. J Biol Chem, 2019, 294(50): 19450. doi:10.1074/jbc.W119.011944. [38] Mukherjee T, Balaji KN. The WNT framework in shaping immune cell responses during bacterial infections[J]. Front Immunol, 2019, 10: 1985. doi:10.3389/fimmu.2019.01985. [39] De A. Wnt/Ca2+ signaling pathway: a brief overview[J]. Acta Biochim Biophys Sin(Shanghai), 2011, 43(10): 745-756. doi:10.1093/abbs/gmr079. [40] Baarsma HA, Königshoff M. ‘WNT-er is coming’: WNT signalling in chronic lung diseases[J]. Thorax, 2017, 72(8): 746-759. doi:10.1136/thoraxjnl-2016-209753. [41] 吴俊华, 孔维佳, 俞艳萍. Wnt5A在鼻息肉组织中的表达[J]. 临床耳鼻咽喉头颈外科杂志, 2010, 24(23): 1064-1067. doi:10.3969/j.issn.1001-1781.2010.23.004. WU Junhua, KONG Weijia, YU Yanping. Up-regulation of Wnt5A in chronic rhinosinusitis with nasal polyps[J]. Journal of Clinical Otorhinolaryngology Head and Neck Surgery, 2010, 24(23): 1064-1067. doi:10.3969/j.issn.1001-1781.2010.23.004. [42] Cheng JZ, Yang JP, Xue K, et al. Desmoglein 3 silencing inhibits inflammation and goblet cell mucin secretion in a mouse model of chronic rhinosinusitis via disruption of the Wnt/β-catenin signaling pathway[J]. Inflammation, 2019, 42(4): 1370-1382. doi:10.1007/s10753-019-00998-z. [43] Bruchhage KL, Koennecke M, Drenckhan M, et al. 1, 8-cineol inhibits the Wnt/β-catenin signaling pathway through GSK-3 dephosphorylation in nasal polyps of chronic rhinosinusitis patients[J]. Eur J Pharmacol, 2018, 835: 140-146. doi:10.1016/j.ejphar.2018.07.060. [44] Vetuschi A, Pompili S, di Marco GP, et al. Can the AGE/RAGE/ERK signalling pathway and the epithelial-to-mesenchymal transition interact in the pathogenesis of chronic rhinosinusitis with nasal polyps?[J]. Eur J Histochem, 2020, 64(1): 3079.doi:10.4081/ejh.2020.3079. [45] Min HJ, Choe JW, Kim KS, et al. High-mobility group box 1 protein induces epithelialmesenchymal transition in upper airway epithelial cells[J]. Rhinology, 2020, 58(5): 495-505. doi:10.4193/Rhin18.281. [46] 王重阳, 金海南, 刘思奇, 等. IL-17A通过p38MAPK/ERK1/2信号通路上调慢性鼻窦炎患者MMP-9的表达[J]. 中国病理生理杂志, 2021, 37(11): 2031-2037. doi:10.3969/j.issn.1000-4718.2021.11.015. WANG Chongyang, JIN Hainan, LIU Siqi, et al. IL-17A up-regulates expression of MMP-9 in patients with chronic rhino? sinusitis through p38 MAPK/ERK1/2 signaling pathway[J]. Chinese Journal of Pathophysiology, 2021, 37(11): 2031-2037. doi:10.3969/j.issn.1000-4718.2021.11.015. [47] Guo GC, Wang JX, Han ML, et al. microRNA-761 induces aggressive phenotypes in triple-negative breast cancer cells by repressing TRIM29 expression[J]. Cell Oncol(Dordr), 2017, 40(2): 157-166. doi:10.1007/s13402-016-0312-6. [48] Hao WW, Zhu YP, Guo Y, et al. miR-1287-5p upregulation inhibits the EMT and pro-inflammatory cytokines in LPS-induced human nasal epithelial cells(HNECs)[J]. Transpl Immunol, 2021, 68: 101429. doi:10.1016/j.trim.2021.101429. [49] Li X, Li C, Zhu GH, et al. TGF-β1 induces epithelial-mesenchymal transition of chronic sinusitis with nasal polyps through microRNA-21[J]. Int Arch Allergy Immunol, 2019, 179(4): 304-319. doi:10.1159/000497829. [50] Shi LL, Xiong P, Zhang L, et al. Features of airway remodeling in different types of Chinese chronic rhinosinusitis are associated with inflammation patterns[J]. Allergy, 2013, 68(1): 101-109. doi:10.1111/all.12064. [51] Wang LF, Chien CY, Tai CF, et al. Matrix metalloproteinase-9 gene polymorphisms in nasal polyposis[J]. BMC Med Genet, 2010, 11: 85. doi:10.1186/1471-2350-11-85. [52] Chiarella E, Lombardo N, Lobello N, et al. Nasal polyposis: insights in epithelial-mesenchymal transition and differentiation of polyp mesenchymal stem cells[J]. Int J Mol Sci, 2020, 21(18): E6878. doi:10.3390/ijms21186878. [53] Lee MY, Kim DW, Khalmuratova R, et al. The IFN-γ-p38, ERK kinase axis exacerbates neutrophilic chronic rhinosinusitis by inducing the epithelial-to-mesenchymal transition[J]. Mucosal Immunol, 2019, 12(3): 601-611. doi:10.1038/s41385-019-0149-1. |
[1] | 敖天, 程雷. 慢性鼻窦炎伴鼻息肉的内型研究及其指导下的精准控制与治疗[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 7-14. |
[2] | 熊攀辉,沈暘,杨玉成. 基于表型和内在型的慢性鼻窦炎诊治进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 15-19. |
[3] | 姚爽,娄鸿飞. 慢性鼻窦炎的内在型研究进展及精准医疗[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 20-29. |
[4] | 石帅,郑泉,程雷. 度普利尤单抗在慢性鼻窦炎伴鼻息肉治疗中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 36-42. |
[5] | 王欢,胡俐,余洪猛. 慢性鼻窦炎相关嗅觉功能障碍研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 43-49. |
[6] | 宜若男,陈福权. 嗜酸性粒细胞与嗅觉功能障碍[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 50-55. |
[7] | 谷钰,万鑫,肖自安. 中性粒细胞和嗜酸性粒细胞在慢性鼻窦炎中的相互影响及临床治疗思考[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 56-63. |
[8] | 林海,朱莹,张维天. 慢性鼻窦炎发病中离子通道作用研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 64-70. |
[9] | 黄丹怡,张婷,陈静,张薇. 上皮屏障在慢性鼻窦炎伴鼻息肉中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 78-83. |
[10] | 李佳倪,朱冬冬,孟粹达. 表观遗传学在慢性鼻窦炎伴鼻息肉发病机制中的作用[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 84-91. |
[11] | 曹轩,肖旭平,李云秋. 透明质酸在慢性鼻窦炎中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 104-109. |
[12] | 刘一潼,周穗子,邱前辉. NLRP3炎症小体在慢性鼻窦炎和变应性鼻炎中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 142-146. |
[13] | 刘厚军,张倩,程友,薛飞,许莉,吴明海. 慢性鼻窦炎伴双侧鼻息肉的发病与RANTES基因多态性的关系分析[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 165-170. |
[14] | 李琳,高正文,崔楠,孙健平,黄贤明,崔静. 儿童慢性鼻窦炎基因表达谱的生物信息学分析[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 171-180. |
[15] | 陈世琴,卫平存,胡云龙,胡金旺. 糖皮质激素三种不同鼻用法对鼻内镜术后黏膜转归的影响[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 195-201. |
|