山东大学耳鼻喉眼学报 ›› 2022, Vol. 36 ›› Issue (3): 64-70.doi: 10.6040/j.issn.1673-3770.0.2021.577

• 研究进展 • 上一篇    下一篇

慢性鼻窦炎发病中离子通道作用研究进展

林海,朱莹,张维天   

  1. 上海交通大学附属第六人民医院 耳鼻咽喉头颈外科/上海交通大学耳鼻咽喉头颈外科研究所/上海市睡眠呼吸障碍疾病重点实验室, 上海 200233
  • 发布日期:2022-06-15
  • 通讯作者: 张维天. E-mail:drzhangwt@163.com
  • 基金资助:
    国家自然科学基金项目(81870700;82071014)

The roles of ion channels in the pathogenesis of chronic rhinosinusitis

LIN Hai, ZHU YingOverview,ZHANG Weitian   

  1. Department of Otorhinolaryngology & Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital/Otolaryngological Institute, Shanghai Jiao Tong University/Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai 200233, China
  • Published:2022-06-15

摘要: 慢性鼻窦炎(CRS)是鼻科目前常见的慢性炎症性疾病,其病因及发病机制尚未完全明确。离子通道参与稳定细胞膜电位、维持细胞液体平衡和调节细胞间信号转导等多种生理活动。目前研究发现钙离子通道、钾离子通道、钠离子通道、氯离子通道及氢离子相关离子通道等与CRS发病密切相关。大量研究发现在CRS的鼻黏膜组织中离子通道表达异常,提示离子通道调控紊乱可能参与CRS的炎症免疫反应过程并导致CRS进一步加重。本文就离子通道在CRS发病中作用的研究进展进行综述,以期为下一步深入探索CRS发病机制及治疗方案提供新的思路。

关键词: 慢性鼻窦炎, 鼻息肉, 离子, 离子通道, 发病机制

Abstract: Chronic rhinosinusitis(CRS)is a common chronic inflammatory disease in rhinology; its etiology and pathogenesis are not fully understood. Ion channels are proposed to participate in a variety of physiological activities, such as stabilizing membrane potential, maintaining cellular volume homeostasis, regulating intercellular signal transduction, and other functions. Calcium channels, potassium channels, sodium channels, chloride channels and hydrogen ion-related ion channels are closely related to the pathogenesis of CRS. Numerous studies have shown that ion channels are abnormally expressed in nasal mucosa tissues from CRS patients, indicating that disturbance of ion channel regulation may be involved in the inflammatory immune response of CRS and lead to its further aggravation. This review summarizes research progress on the roles of ion channels in the pathogenesis of CRS. The aim is to provide new insights into further explorations of CRS pathogenesis and treatment strategies.

Key words: Chronic rhinosinusitis, Nasal polyp, Ion, Ion channels, Pathogenesis

中图分类号: 

  • R765.41
[1] Zhang Y, Gevaert E, Lou HF, et al. Chronic rhinosinusitis in Asia[J]. J Allergy Clin Immunol, 2017, 140(5): 1230-1239. doi:10.1016/j.jaci.2017.09.009.
[2] Kato A, Peters AT, Stevens WW, et al. Endotypes of chronic rhinosinusitis: relationships to disease phenotypes, pathogenesis, clinical findings, and treatment approaches[J]. Allergy, 2022, 77(3): 812-826. doi:10.1111/all.15074.
[3] Cho SH, Hamilos DL, Han DH, et al. Phenotypes of chronic rhinosinusitis[J]. J Allergy Clin Immunol Pract, 2020, 8(5): 1505-1511. doi:10.1016/j.jaip.2019.12.021.
[4] Harraz OF, Jensen LJ. Aging, calcium channel signaling and vascular tone[J]. Mech Ageing Dev, 2020, 191: 111336. doi:10.1016/j.mad.2020.111336.
[5] Miyake MM, Nocera A, Levesque P, et al. Double-blind placebo-controlled randomized clinical trial of verapamil for chronic rhinosinusitis with nasal polyps[J]. J Allergy Clin Immunol, 2017, 140(1): 271-273. doi:10.1016/j.jaci.2016.11.014.
[6] de Almeida AS, Bernardes LB, Trevisan G. TRP channels in cancer pain[J]. Eur J Pharmacol, 2021, 904: 174185. doi:10.1016/j.ejphar.2021.174185.
[7] Tang R, Li ZP, Li MX, et al. Pro-inflammatory role of transient receptor potential canonical channel 6 in the pathogenesis of chronic rhinosinusitis with nasal polyps[J]. Int Forum Allergy Rhinol, 2018, 8(11): 1334-1341. doi:10.1002/alr.22208.
[8] Tong XT, Liu PQ, Zhou HQ, et al. The expression and significance of TRPM8 among chronic rhinosinusitis with nasal polyps[J]. Chin J Otorhinolaryngol Head Neck Surg, 2021, 56(10): 1059-1065. doi:10.3760/cma.j.cn115330-20210430-00243.
[9] Tokunaga T, Ninomiya T, Kato Y, et al. The significant expression of TRPV3 in nasal polyps of eosinophilic chronic rhinosinusitis[J]. Allergol Int, 2017, 66(4): 610-616. doi:10.1016/j.alit.2017.04.002.
[10] Tóth E, Tornóczky T, Kneif J, et al. Upregulation of extraneuronal TRPV1 expression in chronic rhinosinusitis with nasal polyps[J]. Rhinology, 2018, 56(3): 245-254. doi:10.4193/Rhin17.108.
[11] Butorac C, Krizova A, Derler I. Review: structure and activation mechanisms of CRAC channels[J]. Adv Exp Med Biol, 2020, 1131: 547-604. doi:10.1007/978-3-030-12457-1_23.
[12] Lin L, Dai F, Chen ZC, et al. The intervention of CRAC channels alleviates inflammatory responses in nasal polyps[J]. Int Arch Allergy Immunol, 2015, 167(4): 270-279. doi:10.1159/000441109.
[13] Lin L, Dai F, Chen ZC, et al. In vitro treatment with 2-APB inhibits the inflammation in nasal polyps[J]. Otolaryngol Head Neck Surg, 2015, 153(3): 461-467. doi:10.1177/0194599815589582.
[14] Cocozza G, Garofalo S, Capitani R, et al. Microglial potassium channels: from homeostasis to neurodegeneration[J]. Biomolecules, 2021, 11(12): 1774. doi:10.3390/biom11121774.
[15] Kim HK, Kim JH, Kim HJ, et al. Role of TWIK-related potassium channel-1 in chronic rhinosinusitis[J]. J Allergy Clin Immunol, 2018, 141(3): 1124-1127.e6. doi:10.1016/j.jaci.2017.10.012.
[16] Kohanski MA, Brown L, Orr M, et al. Bitter taste receptor agonists regulate epithelial two-pore potassium channels via cAMP signaling[J]. Respir Res, 2021, 22(1): 31. doi:10.1186/s12931-021-01631-0.
[17] Mutchler SM, Kirabo A, Kleyman TR. Epithelial sodium channel and salt-sensitive hypertension[J]. Hypertension, 2021, 77(3): 759-767. doi:10.1161/HYPERTENSIONAHA.120.14481.
[18] Jiang YM, Xu J, Chen YQ, et al. Expression and distribution of epithelial sodium channel in nasal polyp and nasal mucosa[J]. Eur Arch Otorhinolaryngol, 2015, 272(11): 3361-3366. doi:10.1007/s00405-014-3477-5.
[19] Yasuda M, Niisato N, Miyazaki H, et al. Epithelial Na+ channel and ion transport in human nasal polyp and paranasal sinus mucosa[J]. Biochem Biophys Res Commun, 2007, 362(3): 753-758. doi:10.1016/j.bbrc.2007.08.065.
[20] Kim JH, Kwon HJ, Jang YJ. Effects of rhinovirus infection on the expression and function of cystic fibrosis transmembrane conductance regulator and epithelial sodium channel in human nasal mucosa[J]. Ann Allergy Asthma Immunol, 2012, 108(3): 182-187. doi:10.1016/j.anai.2011.12.018.
[21] Saber A, Nakka SS, Hussain R, et al. Staphylococcus aureus in chronic rhinosinusitis: the effect on the epithelial chloride channel(cystic fibrosis transmembrane conductance regulator, CFTR)and the epithelial sodium channel(ENaC)physiology[J]. Acta Otolaryngol, 2019, 139(7): 652-658. doi:10.1080/00016489.2019.1603513.
[22] Ba GY, Tang R, Mao S, et al. The expression and regulation of Na+-K+-ATPase in nasal epithelial cells of chronic rhinosinusitis with nasal polyps[J]. ORL J Otorhinolaryngol Relat Spec, 2022, 84(2):139-146. doi:10.1159/000517101.
[23] Liu YN, Liu ZT, Wang KW. The Ca2+-activated chloride channel ANO1/TMEM16A: an emerging therapeutic target for epithelium-originated diseases? [J]. Acta Pharm Sin B, 2021, 11(6): 1412-1433. doi:10.1016/j.apsb.2020.12.003.
[24] Gaurav R, Bewtra AK, Agrawal DK. Chloride channel 3 channels in the activation and migration of human blood eosinophils in allergic asthma[J]. Am J Respir Cell Mol Biol, 2015, 53(2): 235-245. doi:10.1165/rcmb.2014-0300OC.
[25] Li HB, Han DM, Zhou B, et al. Expressions of chloride channel ClC-2 and ClC-3 in human nasal polyps[J]. J Clin Otorhinolaryngol, 2003, 17(5): 266-267.
[26] Li HB, Jiang HY, Cheng L, et al. Possible role of transforming growth factor beta and interleukin-4 in the up-regulation of CLC-2 and CLC-3 in chronic rhinosinusitis[J]. Am J Rhinol, 2007, 21(4): 389-394. doi:10.2500/ajr.2007.21.3045.
[27] Maule G, Ensinck M, Bulcaen M, et al. Rewriting CFTR to cure cystic fibrosis[J]. Prog Mol Biol Transl Sci, 2021, 182: 185-224. doi:10.1016/bs.pmbts.2020.12.018.
[28] Nguyen TN, Do BH, Kitamura T, et al. Expression of Cl- channels/transporters in nasal polyps[J]. Eur Arch Otorhinolaryngol, 2020, 277(8): 2263-2270. doi:10.1007/s00405-020-05981-1.
[29] McCormick J, Hoffman K, Thompson H, et al. Differential chloride secretory capacity in transepithelial ion transport properties in chronic rhinosinusitis[J]. Am J Rhinol Allergy, 2020, 34(6): 830-837. doi:10.1177/1945892420930975.
[30] Beswick DM, Humphries SM, Balkissoon CD, et al. Impact of cystic fibrosis transmembrane conductance regulator therapy on chronic rhinosinusitis and health status: deep learning CT analysis and patient-reported outcomes[J]. Ann Am Thorac Soc, 2022, 19(1): 12-19. doi:10.1513/AnnalsATS.202101-057OC.
[31] Kim HK, Kook JH, Kang KR, et al. Increased expression of hCLCA1 in chronic rhinosinusitis and its contribution to produce MUC5AC[J]. Laryngoscope, 2016, 126(11): E347-E355. doi:10.1002/lary.26109.
[32] Salomon JJ, Albrecht T, Graeber SY, et al. Chronic rhinosinusitis with nasal polyps is associated with impaired TMEM16A-mediated epithelial chloride secretion[J]. J Allergy Clin Immunol, 2021, 147(6): 2191-2201.e2. doi:10.1016/j.jaci.2021.02.008.
[33] Molinari G, Molinari L, Nervo E. Environmental and endogenous acids can trigger allergic-type airway reactions[J]. Int J Environ Res Public Health, 2020, 17(13): E4688. doi:10.3390/ijerph17134688.
[34] Min JY, Ocampo CJ, Stevens WW, et al. Proton pump inhibitors decrease eotaxin-3/CCL26 expression in patients with chronic rhinosinusitis with nasal polyps: possible role of the nongastric H, K-ATPase[J]. J Allergy Clin Immunol, 2017, 139(1): 130-141.e11. doi:10.1016/j.jaci.2016.07.020.
[35] Vullo S, Kellenberger S. A molecular view of the function and pharmacology of acid-sensing ion channels[J]. Pharmacol Res, 2020, 154: 104166. doi:10.1016/j.phrs.2019.02.005.
[36] Tang R, Ba GY, Li MX, et al. Evidence for role of acid-sensing ion channel 1a in chronic rhinosinusitis with nasal polyps[J]. Eur Arch Otorhinolaryngol, 2021, 278(7): 2379-2386. doi:10.1007/s00405-020-06521-7.
[37] Cai XY, Yao Y, Teng F, et al. The role of P2X7 receptor in infection and metabolism: based on inflammation and immunity[J]. Int Immunopharmacol, 2021, 101(Pt A): 108297. doi:10.1016/j.intimp.2021.108297.
[38] Wang Y, Chen S, Wang WW, et al. Role of P2X7R in eosinophilic and noneosinophilic chronic rhinosinusitis with nasal polyps[J]. Mol Med Rep, 2021, 24: 521. doi:10.3892/mmr.2021.12160.
[39] 李春花, 刘肖, 刘红兵. 半乳糖凝集素10与慢性鼻窦炎伴鼻息肉[J]. 山东大学耳鼻喉眼学报, 2021, 35(3): 106-111. doi:10.6040/j.issn.1673-3770.0.2020.163. LI Chunhua, LIU Xiao, LIU Hongbing. Galectin-10 and chronic rhinosinusitis with nasal polyps[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(3): 106-111.doi:10.6040/j.issn.1673-3770.0.2020.163.
[40] 康雪, 叶菁. 紧密连接与慢性鼻-鼻窦炎发病机制的研究进展[J]. 山东大学耳鼻喉眼学报, 2017, 31(2): 112-115. doi:10.6040/j.issn.1673-3770.0.2017.042. KANG Xue, YE Jing. Progress of tight junctions and chronic rhinosinusitis[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2017, 31(2): 112-115.doi:10.6040/j.issn.1673-3770.0.2017.042.
[1] 李定波,唐志元,邓智毅,曾宪海,张秋航,王再兴. 低温等离子射频消融术治疗药物性鼻炎27例[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 11-17.
[2] 朱晶,张睿,赵媛,李炀,樊孟耘,赵昱. 内镜下低温等离子消融治疗不同炎症分期先天性梨状窝瘘45例[J]. 山东大学耳鼻喉眼学报, 2022, 36(5): 24-29.
[3] 李利杰,田秀芬. CO2激光联合低温等离子治疗早期声门型喉癌40例[J]. 山东大学耳鼻喉眼学报, 2022, 36(4): 79-85.
[4] 敖天, 程雷. 慢性鼻窦炎伴鼻息肉的内型研究及其指导下的精准控制与治疗[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 7-14.
[5] 熊攀辉,沈暘,杨玉成. 基于表型和内在型的慢性鼻窦炎诊治进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 15-19.
[6] 姚爽,娄鸿飞. 慢性鼻窦炎的内在型研究进展及精准医疗[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 20-29.
[7] 梁旭,史丽. 慢性鼻窦炎生物靶向药物治疗的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 30-35.
[8] 石帅,郑泉,程雷. 度普利尤单抗在慢性鼻窦炎伴鼻息肉治疗中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 36-42.
[9] 王欢,胡俐,余洪猛. 慢性鼻窦炎相关嗅觉功能障碍研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 43-49.
[10] 宜若男,陈福权. 嗜酸性粒细胞与嗅觉功能障碍[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 50-55.
[11] 谷钰,万鑫,肖自安. 中性粒细胞和嗜酸性粒细胞在慢性鼻窦炎中的相互影响及临床治疗思考[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 56-63.
[12] 乔新杰,赵玉林. 慢性鼻窦炎中上皮间质转化信号转导通路及其他相关因子的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 71-77.
[13] 黄丹怡,张婷,陈静,张薇. 上皮屏障在慢性鼻窦炎伴鼻息肉中的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 78-83.
[14] 李佳倪,朱冬冬,孟粹达. 表观遗传学在慢性鼻窦炎伴鼻息肉发病机制中的作用[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 84-91.
[15] 于龙刚,姜彦. 鼻细菌微生物组与慢性鼻窦炎伴鼻息肉相关性的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 92-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 周斌,李滨 . 鼻内窥镜下鼻窦鼻息肉手术75例疗效观察[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 24 -26 .
[2] 张玉光,韩旭光,张华,王旭,徐湘辉 . 改良穿透性角膜移植术治疗真菌性角膜炎[J]. 山东大学耳鼻喉眼学报, 2006, 20(1): 94 -95 .
[3] 隆梅辉,何明强,牟艳云,田利健 . 上颌窦炎性肌纤维母细胞瘤1例并文献复习[J]. 山东大学耳鼻喉眼学报, 2008, 22(4): 329 -330 .
[4] 邹 俊,卢 奕,褚仁远 . 体外培养人胚晶状体上皮细胞生长特性的研究[J]. 山东大学耳鼻喉眼学报, 2008, 22(5): 453 -456 .
[5] 夏文清,郑 敏,满晓飞,李建平 . 手法劈核治疗老年性白内障[J]. 山东大学耳鼻喉眼学报, 2008, 22(5): 467 -469 .
[6] 李学昌,王金磊,张玉莉,董文汇,韩在文 . 中药冲洗对鼻黏膜纤毛超微结构的影响[J]. 山东大学耳鼻喉眼学报, 2006, 20(6): 522 -524 .
[7] 康宏建,李晓红,王保安,周 涛 . 重型颅脑损伤患者行气管切开术的意义[J]. 山东大学耳鼻喉眼学报, 2007, 21(3): 234 -236 .
[8] 闫 蕊,朱淋洁 . 翼状胬肉显微手术切除后角膜干细胞移植[J]. 山东大学耳鼻喉眼学报, 2007, 21(3): 243 -244 .
[9] 黄 方,朱从月 . p21、p73及PTEN在头颈部多原发癌中的表达及意义[J]. 山东大学耳鼻喉眼学报, 2007, 21(5): 388 -392 .
[10] 徐豪杰,李学忠,陈成芳,王学海 . 鼻内镜下鼻腔泪囊吻合术17例[J]. 山东大学耳鼻喉眼学报, 2008, 22(2): 132 -134 .