山东大学耳鼻喉眼学报 ›› 2023, Vol. 37 ›› Issue (5): 54-62.doi: 10.6040/j.issn.1673-3770.0.2021.471

• 论著 • 上一篇    下一篇

基于TCGA数据库构建喉鳞状细胞癌免疫相关基因预后模型及筛选靶向分子药物

张永红,张辉,王彩华,杨欣欣,吴允刚,赵玉凤,庞太忠,李晓瑜   

  1. 济宁医学院附属医院 耳鼻咽喉头颈外科, 山东 济宁 272000
  • 发布日期:2023-10-13
  • 通讯作者: 李晓瑜. E-mail:lxyent@163.com
  • 基金资助:
    山东省自然科学基金(ZR2019MH059);济宁市重点研发计划项目(2021YXNS052);济宁医学院贺林院士新医学临床转化工作站科研基金(JYHL2018FZD06);济宁医学院科研扶持基金(JYFC2018FKJ133)

Construction of an immune-associated gene prognostic model and screening of targeted molecular drugs for laryngeal squamous cell carcinoma based on the TCGA database

ZHANG Yonghong, ZHANG Hui, WANG Caihua, YANG Xinxin, WU Yungang, ZHAO Yufeng, PANG Taizhong, LI Xiaoyu   

  1. Department of Otorhinolaryngology & Head and Neck Surgery, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong, China
  • Published:2023-10-13

摘要: 目的 基于综合生物信息学分析,构建喉鳞状细胞癌(LSCC)预后模型,并筛选出LSCC的靶向分子药物。 方法 从TCGA数据库下载123个LSCC和正常对照样本的基因表达矩阵及患者临床信息,进行综合生物信息学分析,包括加权基因共表达网络分析(WGCNA),预后相关的免疫基因(PI-genes)的鉴定,LSCC预后模型的构建及其差异基因分析、生存分析、风险分析、独立预后分析和ROC曲线绘制,以及LSCC潜在靶向药物的筛选。 结果 对1 352个免疫相关mRNAs(I-mRNAs)和各临床性状构建了加权基因共表达网络,找到了2个与LSCC患者生存状态最相关的模块(棕色和红色模块)。然后鉴定了26个PI-genes,构建了基于8个候选PI-genes(CPI-genes)(KC877982.1、AC017100.1、AATBC、LINC02031、ULBP1、SEMA6C、NRTN和CALCB)的LSCC预后模型。通过后续分析可知,该预后模型可预测高、低风险组患者的生存及风险预后,并验证了预后模型的独立预测能力及预测准确性。最后鉴定了5个LSCC的潜在靶向药物(Rilmenidine、Hycanthone、Anisomycin、Megestrol和AR-A014418)。 结论 构建了基于8个CPI-genes 的LSCC预后模型,筛选了5个潜在的靶向分子药物,有望对LSCC的预后预测及精准治疗提供新思路。

关键词: 喉鳞状细胞癌, 免疫相关基因, 预后模型, 靶向药物, 生物信息学分析

Abstract: Objective To construct a prognostic model of laryngeal squamous cell carcinoma(LSCC)and screen for targeted molecular drugs for LSCC based on a comprehensive bioinformatics analysis. Methods The gene expression matrix and patient clinical information for 123 LSCC and normal control samples were downloaded from the TCGA database and a comprehensive bioinformatics analysis was performed. The analyses included weighted gene co-expression network analysis(WGCNA); identification of prognostic immune genes(PI-genes); construction of an LSCC prognostic model; differential gene, survival, risk, and independent prognostic analyses; ROC curve drawing, and screening for potential LSCC target drugs. Results A weighted gene co-expression network of 1 352 immune-associated mRNAs(I-mRNAs)and clinical traits was constructed, and two modules(brown and red)that were the most correlated with the survival status of patients with LSCC were identified. Then, 26 PI-genes were identified and a prognostic model for LSCC was constructed based on 8 candidate PI-genes(CPI-genes)(KC877982.1, AC017100.1, AATBC, LINC02031, ULBP1, SEMA6C, NRTN, and CALCB). Subsequent analyses indicated that our prognostic model could predict the survival and risk prognosis of patients in the high- and low-risk groups and verified the independent predictive ability and accuracy of the prognostic model. Finally, five potential targets of LSCC(rilmenidine, hycanthone, anisomycin, megestrol, and AR-A014418)were identified. Conclusion Eight CPI-genes based on the prognostic model of LSCC were constructed, and five potential targeted molecular drugs were screened. This is expected to provide a new direction for prognosis prediction and precise treatment of LSCC.

Key words: Laryngeal squamous cell carcinoma, Immune-associated genes, Prognostic model, Targeted drugs, Bioinformatics analysis

中图分类号: 

  • R739.65
[1] Cui W, Meng W, Zhao L, et al. TGF-β-induced long non-coding RNA MIR155HG promotes the progression and EMT of laryngeal squamous cell carcinoma by regulating the miR-155-5p/SOX10 axis[J]. International Journal of Oncology, 2019, 54(6): 2005-2018. doi: 10.3892/ijo.2019.4784
[2] 李艳杰, 贾建, 杨萍, 等. 肿瘤异常蛋白在喉癌临床诊断中的价值研究[J]. 山东大学耳鼻喉眼学报, 2021, 35(5): 70-74. doi: 10.6040/j.issn.1673-3770.0.2021.043 LI Yanjie, JIA Jian, YANG Ping, et al. Study on the value of tumor abnormal protein in clinical diagnosis of laryngeal carcinoma[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(5): 70-74. doi: 10.6040/j.issn.1673-3770.0.2021.043
[3] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016[J]. CA: A Cancer Journal for Clinicians, 2016, 66(1). doi: 10.3322/caac.21332
[4] Zuo JJ, Tao ZZ, Chen C, et al. Characteristics of cigarette smoking without alcohol consumption and laryngeal cancer: overall and time-risk relation. A meta-analysis of observational studies[J]. European archives of oto-rhino-laryngology: official journal of the European Federation of Oto-Rhino-Laryngological Societies(EUFOS): affiliated with the German Society for Oto-Rhino-Laryngology- Head and Neck Surgery, 2017, 274(3): 1617-1631. doi: 10.1007/s00405-016-4390-x
[5] Ludwig S, Sharma P, Wise P, et al. mRNA and miRNA Profiles of Exosomes from Cultured Tumor Cells Reveal Biomarkers Specific for HPV16-Positive and HPV16-Negative Head and Neck Cancer[J]. International Journal of Molecular Sciences, 2020. doi: 10.3390/ijms21228570
[6] Wong WK, Vokes D. Solitary femoral metastasis in a locoregionally controlled laryngeal carcinoma[J]. ANZ Journal of Surgery, 2019, 89(7/8): 976-978. doi: 10.1111/ans.14403
[7] Zhang SY, Lu ZM, Luo XN, et al. Retrospective analysis of prognostic factors in 205 patients with laryngeal squamous cell carcinoma who underwent surgical treatment[J]. PLoS One, 2013, 8(4): e60157. doi: 10.1371/journal.pone.0060157
[8] Greenbaum D, Colangelo C, Williams K, et al. Comparing protein abundance and mRNA expression levels on a genomic scale[J]. Genome Biology, 2003, 4(9): 117
[9] Fu PF, Zheng X, Fan X, et al. Role of cytoplasmic lncRNAs in regulating cancer signaling pathways[J]. Journal of Zhejiang University.(Science B), 2019, 20(1): 1-8. doi: 10.1631/jzus.B1800254
[10] Li Z, Wang D, Yin H. A seven immune-related lncRNA signature predicts the survival of patients with colon adenocarcinoma[J]. American Journal of Translational Research, 2020, 12(11): 7060-7078
[11] Gentles A J, Newman A M, Liu C L, et al. The prognostic landscape of genes and infiltrating immune cells across human cancers[J]. Nature Medicine, 2015, 21(8): 938-945. doi: 10.1038/nm.3909
[12] Bindea G, Mlecnik B, Tosolini M, et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer[J]. Immunity, 2013, 39(4): 782-795. doi: 10.1016/j.immuni.2013.10.003
[13] Xiao GF, Yan X, Chen Z, et al. Identification of a novel immune-related prognostic biomarker and small-molecule drugs in clear cell renal cell carcinoma(ccRCC)by a merged microarray-acquired dataset and TCGA database[J]. Frontiers in Genetics, 2020, 11: 810. doi: 10.3389/fgene.2020.00810
[14] Bhattacharya S, Dunn P, Thomas C, et al. ImmPort, toward repurposing of open access immunological assay data for translational and clinical research[J]. Scientific data, 2018, 5: 180015. doi: 10.1038/sdata.2018.15
[15] Song H, Ding N, Li S, et al. Identification of hub genes associated with hepatocellular carcinoma using robust rank aggregation combined with weighted gene co-expression network analysis[J]. Frontiers in Genetics, 2020, 11: 895. doi: 10.3389/fgene.2020.00895
[16] Pan Y, Wu L, He S, et al. Identification of hub genes in thyroid carcinoma to predict prognosis by integrated bioinformatics analysis[J]. Bioengineered, 2021, 12(1): 2928-2940. doi: 10.1080/21655979.2021.1940615
[17] Jiang Y, Gou X, Wei Z, et al. Bioinformatics profiling integrating a three immune-related long non-coding RNA signature as a prognostic model for clear cell renal cell carcinoma[J]. Cancer Cell International, 2020, 20: 166. doi: 10.1186/s12935-020-01242-7
[18] Qi Y, Chen D, Lu Q, et al. Bioinformatic Profiling Identifies a Fatty Acid Metabolism-Related Gene Risk Signature for Malignancy, Prognosis, and Immune Phenotype of Glioma[J]. Disease Markers, 2019: 3917040. doi: 10.1155/2019/3917040
[19] Rasmussen L, Pratt N, Hansen M, et al. Using the “proportion of patients covered” and the Kaplan-Meier survival analysis to describe treatment persistence[J]. Pharmacoepidemiology and drug safety, 2018, 27(8): 867-871. doi: 10.1002/pds.4582
[20] Wu L, Zheng Y, Ruan X, et al. Long-chain noncoding ribonucleic acids affect the survival and prognosis of patients with esophageal adenocarcinoma through the autophagy pathway: construction of a prognostic model[J]. Anti-cancer Drugs, 2021. doi: 10.1097/cad.0000000000001189
[21] Wang L, Zhou N, Qu J, et al. Identification of an RNA binding protein-related gene signature in hepatocellular carcinoma patients[J]. Molecular Medicine, 2020, 26(1): 125. doi: 10.1186/s10020-020-00252-5
[22] Yang W, Niu L, Zhao X, et al. Development and validation of a survival model based on autophagy-associated genes for predicting prognosis of hepatocellular carcinoma[J]. American Journal of Translational Research, 2020, 12(10): 6705-6722
[23] Lamb J. The Connectivity Map: a new tool for biomedical research[J]. Nature Reviews Cancer, 2007, 7(1): 54-60
[24] Kim S, Thiessen PA, Bolton EE, et al. Pubchem substance and compound databases[J]. Nucleic Acids Research, 2016, 44(D1): D1202-D1213. doi: 10.1093/nar/gkv951
[25] Wang S, Wu J, Song Y, et al. Expression of endothelin-1 in laryngocarcinoma tissues and its clinical significance[J]. Oncology Letters, 2016, 11(5): 3366-3368
[26] Zhang X, Rao A, Sette P, et al. IDH mutant gliomas escape natural killer cell immune surveillance by downregulation of NKG2D ligand expression[J]. Neuro-oncology, 2016, 18(10): 1402-1412. doi: 10.1093/neuonc/now061
[27] Qi F, Du X, Zhao Z, et al. Viatumor mutation burden-associated LINC00638/miR-4732-3p/ULBP1 axis promotes immune escape PD-L1 in hepatocellular carcinoma[J]. Frontiers in Oncology, 2021, 11: 729340. doi: 10.3389/fonc.2021.729340
[28] Easom N, Marks M, Jobe D, et al. ULBP1 is elevated in human hepatocellular carcinoma and predicts outcome[J]. Frontiers in Oncology, 2020, 10: 971. doi: 10.3389/fonc.2020.00971
[29] Sah N, Kuehu DL, Khadka VS, et al. RNA sequencing-based analysis of the laying hen uterus revealed the novel genes and biological pathways involved in the eggshell biomineralization[J]. Scientific Reports, 2018, 8(1): 16853. doi: 10.1038/s41598-018-35203-y
[30] Dai C, Zhang B, Liao Y, et al. CALCB rs3829222 T/T genotype and low expression of CALCB are high-risk factors for adenoid cystic carcinoma of salivary gland[J]. Disease Markers, 2021: 5546858. doi: 10.1155/2021/5546858
[31] Rose C, Menzies FM, Renna M, et al. Rilmenidine attenuates toxicity of polyglutamine expansions in a mouse model of Huntington's disease[J]. Human Molecular Genetics, 2010, 19(11): 2144-2153. doi: 10.1093/hmg/ddq093
[32] Liu J, Liao X, Zhu X, et al. Identification of potential prognostic small nucleolar RNA biomarkers for predicting overall survival in patients with sarcoma[J]. Cancer Medicine, 2020, 9(19): 7018-7033. doi: 10.1002/cam4.3361
[33] Naidu MD, Agarwal R, Pena LA, et al. Lucanthone and its derivative hycanthone inhibit apurinic endonuclease-1(APE1)by direct protein binding[J]. PLoS One, 2011, 6(9): e23679. doi: 10.1371/journal.pone.0023679
[34] Varbanov H, Kuttler F, Banfi D, et al. Screening-based approach to discover effective platinum-based chemotherapies for cancers with poor prognosis[J]. PLoS One, 2019, 14(1): e0211268. doi: 10.1371/journal.pone.0211268
[35] Lu Z, Miao Y, Muhammad I, et al. Colistin-induced autophagy and apoptosis involves the JNK-Bcl2-Bax signaling pathway and JNK-p53-ROS positive feedback loop in PC-12 cells[J]. Chemico-biological Interactions, 2017, 277: 62-73. doi: 10.1016/j.cbi.2017.08.011
[36] Kim M, Lee S, Shin S, et al. Novel natural killer cell-mediated cancer immunotherapeutic activity of anisomycin against hepatocellular carcinoma cells[J]. Scientific Reports, 2018, 8(1): 10668. doi: 10.1038/s41598-018-29048-8
[37] Deng T, Gong Y, Liao X, et al. Integrative analysis of a novel eleven-small nucleolar RNA prognostic signature in patients with lower grade glioma[J]. Frontiers in Oncology, 2021, 11: 650828. doi: 10.3389/fonc.2021.650828
[38] Xiao Y, Tu Y, Li Y. Expression level of long non-coding RNA colon adenocarcinoma hypermethylated serves as a novel prognostic biomarker in patients with thyroid carcinoma[J]. Bioscience Reports, 2021, 41(4). doi: 10.1042/bsr20210284
[39] Zhang X, Zhang W, Chen F, et al. Combined effect of chrysin and apigenin on inhibiting the development and progression of colorectal cancer by suppressing the activity of P38-MAPK/AKT pathway[J]. IUBMB Life, 2021, 73(5): 774-783. doi: 10.1002/iub.2456
[40] Garcia J, Shamliyan T. Off-label megestrol in patients with anorexia-cachexia syndrome associated with malignancy and its treatments[J]. The American Journal of Medicine, 2018, 131(6): 623-629. doi: 10.1016/j.amjmed.2017.12.028
[41] Wang H, Shi H. Megestrol acetate drives endometrial carcinoma cell senescence via interacting with progesterone receptor B/FOXO1 axis[J]. Experimental Biology and Medicine(Maywood, N.J.), 2021: 15353702211026566. doi: 10.1177/15353702211026566
[42] Rejinold N, Baby T, Chennazhi K, et al. Multi Drug Loaded Thermo-Responsive Fibrinogen-graft-Poly(N-vinyl Caprolactam)Nanogels for Breast Cancer Drug Delivery[J]. Journal of Biomedical Nanotechnology, 2015, 11(3): 392-402. doi: 10.1166/jbn.2015.1911
[43] Bhat R, Xue Y, Berg S, et al. Structural insights and biological effects of glycogen synthase kinase 3-specific inhibitor AR-A014418[J]. The Journal of Biological Chemistry, 2003, 278(46): 45937-45945
[44] Abe K, Yamamoto N, Domoto T, et al. Glycogen synthase kinase 3β as a potential therapeutic target in synovial sarcoma and fibrosarcoma[J]. Cancer Science, 2020, 111(2): 429-440. doi: 10.1111/cas.14271
[45] Seip K, Jørgensen K, Haselager M, et al. Stroma-induced phenotypic plasticity offers phenotype-specific targeting to improve melanoma treatment[J]. Cancer Letters, 2018, 439: 1-13. doi: 10.1016/j.canlet.2018.09.023
[46] Ugolkov A, Bondarenko G, Dubrovskyi O, et al. 9-ING-41, a small-molecule glycogen synthase kinase-3 inhibitor, is active in neuroblastoma[J]. Anti-cancer Drugs, 2018, 29(8): 717-724. doi: 10.1097/cad.0000000000000652
[47] Kunnimalaiyaan S, Gamblin T, Kunnimalaiyaan M. Glycogen synthase kinase-3 inhibitor AR-A014418 suppresses pancreatic cancer cell growth via inhibition of GSK-3-mediated Notch1 expression[J]. HPB: The Official Journal of the International Hepato Pancreato Biliary Association, 2015, 17(9): 770-776. doi: 10.1111/hpb.12442
[1] 侯凌霄,展长翠,许安廷,范新泰,王娜. 鼻黏膜组织CD4+ T细胞参与季节性变应性鼻炎发病机制的生物信息学分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(4): 96-104.
[2] 梁旭,史丽. 慢性鼻窦炎生物靶向药物治疗的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(3): 30-35.
[3] 刘勇,袁存立,曹慧,郑成彩,晁方, 许风雷. CHD1L通过EMT促进喉鳞状细胞癌细胞的增殖、侵袭和转移[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 32-39.
[4] 齐雯雯,陈鲁秋,贾涛,陈雪梅,张杰,张皓,金鹏,张虎. 复发性喉乳头状瘤中潜在生物学标志物的筛选及生物信息学分析[J]. 山东大学耳鼻喉眼学报, 2021, 35(5): 75-84.
[5] 范义燕,张肖林,刘秀珍,尹晶晶,袁进,王延飞,陈军. CPS1在喉鳞癌组织中的表达及临床意义[J]. 山东大学耳鼻喉眼学报, 2020, 34(6): 72-76.
[6] 于克娜,孙凯月,张杰,金鹏. 西妥昔单抗治疗头颈部鳞状细胞癌差异表达基因的生物信息学分析[J]. 山东大学耳鼻喉眼学报, 2020, 34(4): 117-124.
[7] 陈慧君,宋圣花,董伟达,周涵. 术前外周血纤维蛋白原水平对喉癌预后的影响[J]. 山东大学耳鼻喉眼学报, 2020, 34(2): 110-114.
[8] 朱晓城,钱晓云,顾亚军,沈晓辉,宋盼盼,李惠,高下. MGMT和EGFR蛋白在喉鳞状细胞癌中的表达及临床意义[J]. 山东大学耳鼻喉眼学报, 2017, 31(4): 68-72.
[9] 安永明,穆文利,田艳勋,李伟,吴彦桥. 喉鳞癌组织中抑癌基因Maspin和转录因子Ets1的表达及意义[J]. 山东大学耳鼻喉眼学报, 2017, 31(3): 91-94.
[10] 李富, 赵书佑. 肺癌肿瘤抑制因子-1在喉鳞癌组织中的表达及其意义[J]. 山东大学耳鼻喉眼学报, 2015, 29(6): 36-38.
[11] 许海艳1,彭解人1,区永康1,张琼霞2,张存良1,汤智平1,关中1. 喉癌组织中核表皮生长因子受体与Aurora-A激酶的表达及其临床意义[J]. 山东大学耳鼻喉眼学报, 2012, 26(5): 16-21.
[12] 吴桂卿1,田军2,孙静1,陈琪1. Tiam1和MTA1在喉鳞癌组织中的表达及意义[J]. 山东大学耳鼻喉眼学报, 2012, 26(1): 41-43.
[13] 刘明秋1,赵书佑2. KAI1基因在喉癌及转移淋巴结中的表达[J]. 山东大学耳鼻喉眼学报, 2010, 24(2): 11-13.
[14] 徐志坚,彭解人,黄晓明,关 中,祝晓芬,廖艳萍 . G3BP在喉鳞状细胞癌的表达及其临床意义[J]. 山东大学耳鼻喉眼学报, 2008, 22(5): 401-404 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!