山东大学耳鼻喉眼学报 ›› 2023, Vol. 37 ›› Issue (6): 46-61.doi: 10.6040/j.issn.1673-3770.0.2023.190

• 名师特稿 • 上一篇    下一篇

深度学习方法在睡眠呼吸暂停检测中的研究进展

石争浩1,周亮1,李成建1,张治军1,张一彤2,尤珍臻1,罗靖1,陈敬国2,刘海琴2,赵明华1,黑新宏1,任晓勇2   

  1. 1. 西安理工大学 计算机科学与工程学院, 陕西 西安 710048;
    2. 西安交通大学第二附属医院 耳鼻咽喉头颈外科, 陕西 西安 710004
  • 发布日期:2023-12-15
  • 基金资助:
    国家自然基金项目(62076198);陕西省自然科学研究项目(2020JM-463);陕西省重点研发计划项目(2020GXLH-Y005);陕西省重点研发计划项目(2021GY-080)

Research progress of deep learning methods in sleep apnea detection

SHI Zhenghao1, ZHOU Liang1, LI Chengjian1, ZHANG Zhijun1, ZHANG Yitong2, YOU Zhenzhen1, LUO Jing1, CHEN Jingguo2, LIU Haiqin2, ZHAO Minghua1, HEI Xinhong1, REN Xiaoyong2   

  1. 1. School of Computer Science and Engineering, Xi'an University of Technology, Xi'an 710048, Shaanxi, China2. Department of Otorhinolaryngology & Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
  • Published:2023-12-15

摘要: 睡眠呼吸暂停综合征是一种由上气道部分或完全阻塞引起的常见睡眠呼吸系统疾病,易诱发高血压、冠心病等心脑血管疾病,对人们的睡眠质量以及身心健康具有严重影响。近年来,深度学习方法在睡眠呼吸暂停检测中的应用研究受到了越来越多的关注。为推进基于深度学习的睡眠呼吸暂停检测技术的研究发展,论文对当前主流的基于深度学习的睡眠呼吸暂停检测方法进行了系统梳理和总结,介绍了常见的睡眠呼吸暂停检测公开数据集,给出了基于深度学习睡眠呼吸暂停检测方法演化发展过程,综述了近年来深度学习方法在睡眠呼吸暂停检测中的研究进展,分析了典型方法的思路和特点,给出了典型方法的实验比较,最后给出现阶段研究所存在的问题,并对未来研究及发展趋势进行了展望。

关键词: 睡眠呼吸暂停综合征, 深度学习, 多导睡眠图, 生理信号预处理

Abstract: Sleep apnea syndrome is a common sleep respiratory disorder caused by partial or complete upper airway obstruction, which can lead to hypertension, coronary heart disease, and other cardiovascular diseases. It also seriously impacts sleep quality and physical and mental health. Sleep polysomnography monitoring is commonly used for determining and confirming sleep apnea, but manually analyzing sleep polysomnography is time-consuming, labor-intensive, and error-prone. In recent years, the research on the application of deep learning methods in sleep apnea detection has received increasing attention. To promote the research development of deep learning-based sleep apnea detection technology, this paper systematically composes and summarizes the current mainstream deep learning-based sleep apnea detection methods, introduces the common sleep apnea detection public datasets, describes the evolutionary development process of deep learning-based sleep apnea detection methods, reviews the deep learning methods in sleep apnea detection in recent years, analyzes the ideas and characteristics of typical methods, characterizes the experimental comparison of typical methods, appraises the problems existing at the present stage of research, and discusses future research and development trends.

Key words: Sleep Apnea Syndrome, Deep learning, Polysomnography, Physiological signal preprocessing

中图分类号: 

  • R766
[1] 潘健云, 莫坤兰, 胡玉丽, 等. 互联网医疗服务对阻塞性睡眠呼吸暂停低通气综合征患者使用CPAP的研究进展[J]. 山东大学耳鼻喉眼学报, 2022, 36(6): 117-122. doi:10.6040/j.issn.1673-3770.0.2021.458 PAN Jianyun, MO Kunlan, HU Yuli, et al. Research progress in Internet medical services of CPAP use in patients with obstructive sleep apnea hypopnea syndrome[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(6): 117-122. doi:10.6040/j.issn.1673-3770.0.2021.458
[2] Sun CX, Hong SD, Wang JY, et al. A systematic review of deep learning methods for modeling electrocardiograms during sleep[J]. Physiol Meas, 2022, 43(8): 08TR02. doi:10.1088/1361-6579/ac826e
[3] JeyaJothi ES, Anitha J, Rani S, et al. A comprehensive review: computational models for obstructive sleep apnea detection in biomedical applications[J]. Biomed Res Int, 2022: 7242667. doi:10.1155/2022/7242667
[4] Li XL, Ling SH, Su S. A hybrid feature selection and extraction methods for sleep apnea detection using bio-signals[J]. Sensors, 2020, 20(15): 4323. doi:10.3390/s20154323
[5] Ivanko K, Ivanushkina N, Rykhalska A. Identifying episodes of sleep apnea in ECG by machine learning methods[C] //2020 IEEE 40th International Conference on Electronics and Nanotechnology(ELNANO). Ukraine:IEEE, 2020: 588-593. doi:10.1109/ELNANO50318.2020.9088749
[6] Liu J, Li Q, Xin Y, et al. Obstructive sleep apnea detection using sleep architecture[C] //2020 IEEE International Conference on Mechatronics and Automation(ICMA). Beijing:IEEE, 2020: 255-260. doi:10.1109/ICMA49215.2020.9233529
[7] Wang T, Lu CH, Shen GH, et al. Sleep apnea detection from a single-lead ECG signal with automatic feature-extraction through a modified LeNet-5 convolutional neural network[J]. PeerJ, 2019, 7: e7731. doi:10.7717/peerj.7731
[8] Jiménez-García J, García M, Gutiérrez-Tobal GC, et al. A 2D convolutional neural network to detect sleep apnea in children using airflow and oximetry[J]. Comput Biol Med, 2022, 147: 105784. doi:10.1016/j.compbiomed.2022.105784
[9] Barnes LD, Lee K, Kempa-Liehr AW, et al. Detection of sleep apnea from single-channel electroencephalogram(EEG)using an explainable convolutional neural network(CNN)[J]. PLoS One, 2022, 17(9): e0272167. doi:10.1371/journal.pone.0272167
[10] Papini GB, Fonseca P, Margarito J, et al. On the generalizability of ECG-based obstructive sleep apnea monitoring: merits and limitations of the Apnea-ECG database[C] // Annual International Conference of the IEEE Engineering in Medicine and Biology Society. HI:IEEE, 2018: 6022-6025. https://doi.org/10.1109/EMBC.2018.8513660
[11] Liang X, Xiong J, Cao Z, et al. Decreased sample entropy during sleep-to-wake transition in sleep apnea patients[J]. Physiological measurement, 2021,42(4):1361-6579. doi:10.1088/1361-6579/abf1b2
[12] Ichimaru Y, Moody GB. Development of the polysomnographic database on CD-ROM[J]. Psychiatry Clin Neurosci, 1999, 53(2): 175-177. doi:10.1046/j.1440-1819.1999.00527.x
[13] Redline S, Amin R, Beebe D, et al. The childhood adenotonsillectomy trial(CHAT): rationale, design, and challenges of a randomized controlled trial evaluating a standard surgical procedure in a pediatric population[J]. Sleep, 2011, 34(11): 1509-1517. doi:10.5665/sleep.1388
[14] Ghassemi MM, Moody BE, Lehman LH, et al. You Snooze, You Win: the PhysioNet/Computing in Cardiology Challenge 2018[J]. Comput Cardiol(2010), 2018, 45: 10.22489/cinc.2018.049. doi: 10.22489/cinc.2018.049
[15] Quan SF, Howard BV, Iber C, et al. The sleep heart health study: design, rationale, and methods[J]. Sleep, 1997, 20(12): 1077-1085
[16] Zarei A, Beheshti H, Asl BM. Detection of sleep apnea using deep neural networks and single-lead ECG signals[J]. Biomedical Signal Processing and Control, 2022, 71: 103125. doi:10.1016/j.bspc.2021.103125
[17] Peppard PE, Young T, Palta M, et al. Prospective study of the association between sleep-disordered breathing and hypertension[J]. N Engl J Med, 2000, 342(19): 1378-1384. doi:10.1056/nejm200005113421901
[18] Vaquerizo-Villar F, Alvarez D, Kheirandish-Gozal L, et al. Convolutional neural networks to detect pediatric apnea-hypopnea events from oximetry[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2019, 2019: 3555-3558. doi:10.1109/EMBC.2019.8857934
[19] Marcus C, Moore RH, Rosen C, et al. A randomized trial of adenotonsillectomy for childhood sleep apnea[J]. Surv Anesthesiol, 2014, 58: 41. doi:10.1097/01.SA.0000441005.88110.FC
[20] Jambukia SH, Dabhi VK, Prajapati HB. Classification of ECG signals using machine learning techniques: a survey[C/OL] //2015 International Conference on Advances in Computer Engineering and Applications. Ghaziabad: IEEE, 2015: 714-721. doi:10.1109/ICACEA.2015.7164783
[21] Liu XW, Wang H, Li ZJ, et al. Deep learning in ECG diagnosis: a review[J]. Knowl Based Syst, 2021, 227: 107187. doi:10.1016/j.knosys.2021.107187
[22] Penzel T, Kantelhardt JW, Bartsch RP, et al. Modulations of Heart Rate, ECG, and Cardio-Respiratory Coupling Observed in Polysomnography[J]. Front Physiol, 2016,7: 460. doi: 10.3389/fphys.2016.00460
[23] Chang HY, Yeh CY, Lee CT, et al. A sleep apnea detection system based on a one-dimensional deep convolution neural network model using single-lead electrocardiogram[J]. Sensors, 2020, 20(15): 4157. doi:10.3390/s20154157
[24] Erdenebayar U, Kim YJ, Park JU, et al. Deep learning approaches for automatic detection of sleep apnea events from an electrocardiogram[J]. Comput Meth Programs Biomed, 2019, 180: 105001. doi:10.1016/j.cmpb.2019.105001
[25] Sharan RV, Berkovsky S, Xiong H, et al. ECG-derived heart rate variability interpolation and 1-D convolutional neural networks for detecting sleep apnea[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2020: 637-640. doi:10.1109/EMBC44109.2020.9175998
[26] Yang QA, Zou L, Wei KM, et al. Obstructive sleep apnea detection from single-lead electrocardiogram signals using one-dimensional squeeze-and-excitation residual group network[J]. Comput Biol Med, 2022, 140: 105124. doi:10.1016/j.compbiomed.2021.105124
[27] Wang L, Lin Y, Wang J. A RR interval based automated apnea detection approach using residual network[J]. comput methods programs biomed, 2019,176:93-104. doi: 10.1016/j.cmpb.2019.05.002
[28] Shen Q, Qin HJ, Wei KM, et al. Multiscale deep neural network for obstructive sleep apnea detection using RR interval from single-lead ECG signal[J]. IEEE Trans Instrum Meas, 2021, 70: 1-13. doi:10.1109/TIM.2021.3062414
[29] Hamilton P. Open source ECG analysis[C/OL] //Computers in Cardiology. USA: IEEE, 2003: 101-104. doi:10.1109/CIC.2002.1166717
[30] Pan JP, Tompkins WJ. A real-time QRS detection algorithm[J]. IEEE Trans Biomed Eng, 1985, BME-32(3): 230-236. doi:10.1109/TBME.1985.325532
[31] Urtnasan E, Park JU, Joo EY, et al. Identification of sleep apnea severity based on deep learning from a short-term normal ECG[J]. J Korean Med Sci, 2020, 35(47): e399. doi:10.3346/jkms.2020.35.e399
[32] Singh SA, Majumder S. A novel approach osa detection using single-lead ECG scalogram based on deep neural network[J]. J Mech Med Biol, 2019, 19(4): 1950026. doi:10.1142/s021951941950026x
[33] Mashrur FR, Islam MS, Saha DK, et al. SCNN: Scalogram-based convolutional neural network to detect obstructive sleep apnea using single-lead electrocardiogram signals[J]. Comput Biol Med, 2021, 134: 104532. doi:10.1016/j.compbiomed.2021.104532
[34] Kumar M, Pachori RB, Acharya UR. Characterization of coronary artery disease using flexible analytic wavelet transform applied on ECG signals[J]. Biomed Signal Process Contr, 2017, 31: 301-308. doi:10.1016/j.bspc.2016.08.018
[35] Gupta K, Bajaj V, Ahmad Ansari I. OSACN-net: automated classification of sleep apnea using deep learning model and smoothed Gabor spectrograms of ECG signal[J]. IEEE Trans Instrum Meas, 2022, 71: 1-9. doi:10.1109/TIM.2021.3132072
[36] Feng KC, Qin HJ, Wu S, et al. A sleep apnea detection method based on unsupervised feature learning and single-lead electrocardiogram[J]. IEEE Trans Instrum Meas, 2021, 70: 1-12. doi:10.1109/TIM.2020.3017246
[37] Zhang JM, Tang Z, Gao JF, et al. Automatic detection of obstructive sleep apnea events using a deep CNN-LSTM model[J]. Comput Intell Neurosci, 2021: 5594733. doi:10.1155/2021/5594733
[38] Faust O, Barika R, Shenfield A, et al. Accurate detection of sleep apnea with long short-term memory network based on RR interval signals[J]. Knowl Based Syst, 2021, 212: 106591. doi:10.1016/j.knosys.2020.106591
[39] Bahrami M, Forouzanfar M. Sleep apnea detection from single-lead ECG: a comprehensive analysis of machine learning and deep learning algorithms[J]. IEEE Trans Instrum Meas, 2022, 71: 1-11. doi:10.1109/TIM.2022.3151947
[40] Qin HJ, Liu GZ. A dual-model deep learning method for sleep apnea detection based on representation learning and temporal dependence[J]. Neurocomputing, 2022, 473: 24-36. doi:10.1016/j.neucom.2021.12.001
[41] Mukherjee D, Dhar K, Schwenker F, et al. Ensemble of deep learning models for sleep apnea detection: an experimental study[J]. Sensors, 2021, 21(16): 5425. doi:10.3390/s21165425
[42] Bernardini A, Brunello A, Gigli GL, et al. AIOSA: an approach to the automatic identification of obstructive sleep apnea events based on deep learning[J]. Artif Intell Med, 2021, 118: 102133. doi:10.1016/j.artmed.2021.102133
[43] Almutairi H, Hassan GM, Datta A. Classification of Obstructive Sleep Apnoea from single-lead ECG signals using convolutional neural and Long Short Term Memory networks[J]. Biomed Signal Process Contr, 2021, 69: 102906. doi:10.1016/j.bspc.2021.102906
[44] Shao SL, Han GJ, Wang T, et al. Obstructive sleep apnea detection scheme based on manually generated features and parallel heterogeneous deep learning model under IoMT[J]. IEEE J Biomed Heath Inform, 2022, 26(12): 5841-5850. doi:10.1109/JBHI.2022.3166859
[45] Bahrami M, Forouzanfar M. Deep learning forecasts the occurrence of sleep apnea from single-lead ECG[J]. Cardiovasc Eng Technol, 2022, 13(6): 809-815. doi:10.1007/s13239-022-00615-5
[46] Hu SC, Cai WJ, Gao TJ, et al. A hybrid transformer model for obstructive sleep apnea detection based on self-attention mechanism using single-lead ECG[J]. IEEE Trans Instrum Meas, 2022, 71: 1-11. doi:10.1109/TIM.2022.3193169
[47] Liu H, Cui SW, Zhao XH, et al. Detection of obstructive sleep apnea from single-channel ECG signals using a CNN-transformer architecture[J]. Biomed Signal Process Contr, 2023, 82: 104581. doi:10.1016/j.bspc.2023.104581
[48] Lin Y, Zhang H, Wu W, et al. Wavelet transform and deep learning-based obstructive sleep apnea detection from single-lead ECG signals[EB/OL]. [2023-06-16]. https://www.researchsquare.com/article/rs-3028322/v1
[49] Kumar Tyagi P, Agrawal D. Automatic detection of sleep apnea from single-lead ECG signal using enhanced-deep belief network model[J]. Biomed Signal Process Contr, 2023, 80: 104401. doi:10.1016/j.bspc.2022.104401
[50] Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Comput, 1997, 9(8): 1735-1780. doi:10.1162/neco.1997.9.8.1735
[51] Chung J, Gulcehre C, Cho K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[EB/OL].(2014-12-14)[2023-05-11].https://arxiv.org/abs/1412.3555
[52] Chen LL, Zhang X, Song CY. An automatic screening approach for obstructive sleep apnea diagnosis based on single-lead electrocardiogram[J]. IEEE Trans Autom Sci Eng, 2015, 12(1): 106-115. doi:10.1109/TASE.2014.2345667
[53] Mostafa SS, Mendonça F, Ravelo-García AG, et al. A systematic review of detecting sleep apnea using deep learning. sensors(basel)[J]. 2019,19(22):4934. doi: 10.3390/s19224934
[54] 张一彤, 刘海琴, 任晓勇. 儿童阻塞性睡眠呼吸暂停相关认知障碍的研究现状、问题与展望[J]. 山东大学耳鼻喉眼学报, 2021, 35(2): 119-124. doi: 10.6040/j.issn.1673-3770.0.2020.187 ZHANG Yitong, LIU Haiqin, REN Xiaoyong. Cognitive and behavioral dysfunction related to obstructive sleep apnea in children: current status, problems, and prospects[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(2): 119-124. doi: 10.6040/j.issn.1673-3770.0.2020.187
[55] Vaquerizo-Villar F, Alvarez D, Kheirandish-Gozal L, et al. Automatic assessment of pediatric sleep apnea severity using overnight oximetry and convolutional neural networks[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2020: 633-636. doi:10.1109/EMBC44109.2020.9176342
[56] Vaquerizo-Villar F, álvarez D, Kheirandish-Gozal L, et al. A convolutional neural network architecture to enhance oximetry ability to diagnose pediatric obstructive sleep apnea[J]. IEEE journal of biomedical and health informatics, 2021, 25(8): 2906-2916
[57] John A, Nundy KK, Cardiff B, et al. SomnNET: an SpO2 based deep learning network for sleep apnea detection in smartwatches[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2021: 1961-1964. doi:10.1109/EMBC46164.2021.9631037
[58] Leino A, Nikkonen S, Kainulainen S, et al. Neural network analysis of nocturnal SpO2 signal enables easy screening of sleep apnea in patients with acute cerebrovascular disease[J]. Sleep Med,2021,79:71-78. doi: 10.1016/j.sleep.2020.12.032
[59] Sharma P, Jalali A, Majmudar M, et al. Deep-Learning based Sleep Apnea Detection using SpO2 and Pulse Rate[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2022: 2611-2614. doi:10.1109/EMBC48229.2022.9871295
[60] álvarez D, Gutiérrez-Tobal GC, Vaquerizo-Villar F, et al. Automated analysis of unattended portable oximetry by means of Bayesian neural networks to assist in the diagnosis of sleep apnea[C/OL] //2016 Global Medical Engineering Physics Exchanges/Pan American Health Care Exchanges(GMEPE/PAHCE). Madrid: IEEE, 2016: 1-4. doi:10.1109/GMEPE-PAHCE.2016.7504628
[61] Marcos JV, Hornero R, álvarez D, et al. Utility of multilayer perceptron neural network classifiers in the diagnosis of the obstructive sleep apnoea syndrome from nocturnal oximetry[J]. Comput Meth Programs Biomed, 2008, 92(1): 79-89. doi:10.1016/j.cmpb.2008.05.006
[62] Jiang DH, Ma Y, Wang YY. A multi-scale parallel convolutional neural network for automatic sleep apnea detection using single-channel EEG signals[C] //2018 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics(CISP-BMEI). October 13-15, 2018, Beijing, China. IEEE, 2019: 1-5. doi:10.1109/CISP-BMEI.2018.8633132
[63] Mahmud T, Khan IA, Mahmud TI, et al. Sleep apnea detection from variational mode decomposed EEG signal using a hybrid CNN-BiLSTM[J]. IEEE Access, 2021, 9: 102355-102367. doi:10.1109/ACCESS.2021.3097090
[64] Mahmud T, Khan IA, Mahmud TI, et al. A sub-frame based feature extraction approach from split-band EEG signal for sleep apnea event detection using multi-layer LSTM[C] //2020 IEEE Region 10 Symposium(TENSYMP). June 5-7, 2020, Dhaka, Bangladesh. IEEE, 2020: 1299-1302. doi:10.1109/TENSYMP50017.2020.9230848
[65] Mahmud T, Khan IA, Ibn Mahmud T, et al. Sleep apnea event detection from sub-frame based feature variation in EEG signal using deep convolutional neural network[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2020, 2020: 5580-5583. doi:10.1109/EMBC44109.2020.9176433
[66] Khan IA, Mahmud TI, Mahmud T, et al. Deep convolutional neural network based sleep apnea detection scheme using spectro-temporal subframes of EEG signal[C/OL] //11th International Conference on Electrical and Computer Engineering(ICECE). Bangladesh: IEEE, 2021: 463-466. doi:10.1109/ICECE51571.2020.9393059
[67] Wang Y, Xiao ZW, Fang SW, et al. BI - Directional long short-term memory for automatic detection of sleep apnea events based on single channel EEG signal[J]. Comput Biol Med, 2022, 142: 105211. doi:10.1016/j.compbiomed.2022.105211
[68] Yu H, Liu DY, Zhao J, et al. A sleep apnea-hypopnea syndrome automatic detection and subtype classification method based on LSTM-CNN[J]. Biomed Signal Process Contr, 2022, 71: 103240. doi:10.1016/j.bspc.2021.103240
[69] Gurrala V, Yarlagadda P, Koppireddi P. Detection of sleep apnea based on the analysis of sleep stages data using single channel EEG[J]. Traitement Du Signal, 2021, 38(2): 431-436. doi:10.18280/ts.380221
[70] Chengjian Li, Zhenghao Shi, Liang Zhou, et al. TFFormer:a time frequency information fusion based cnn-transformer model for osa detection with single-lead ECG[C/OL] //IEEE Transactions on Instrumentation and Measurement. [S.l.] : IEEE,2023.doi: 0.1109/TIM.2023.3312472
[71] Chaw HT, Kamolphiwong S, Wongsritrang K. Sleep apnea detection using deep learning[J]. Teh Glas(Online), 2019, 13(4): 261-266. doi:10.31803/tg-20191104191722
[72] Nikkonen S, Afara IO, Leppänen T, et al. Artificial neural network analysis of the oxygen saturation signal enables accurate diagnostics of sleep apnea[J]. Sci Rep, 2019, 9: 13200. doi:10.1038/s41598-019-49330-7
[1] 王腾,余林,李穗. 血清γ-谷氨酰基转移酶与阻塞性睡眠呼吸暂停综合征伴发高血压的相关性研究[J]. 山东大学耳鼻喉眼学报, 2023, 37(6): 80-84.
[2] 张玉焕,张俊波,尹国平,袁雪梅,曹鑫,孙宇,陈强,叶京英. 鼾症患者前后半夜多导睡眠监测参数的对比分析[J]. 山东大学耳鼻喉眼学报, 2023, 37(6): 112-117.
[3] 杜曰山一,王鲜,张国明. 人工智能辅助早产儿视网膜病变诊疗新进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(3): 157-162.
[4] 刘佳钰,樊慧明,邹游,陈始明. 人工智能在鼻咽癌诊断与治疗中的应用研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(2): 135-142.
[5] 黄天泽,陈迪,李莹. 机器学习在眼表疾病诊断及角膜手术中的应用进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(6): 13-19.
[6] 王迪,程金章,于丹. 基于机器学习的人工智能技术在耳鼻喉科临床诊疗中的应用进展[J]. 山东大学耳鼻喉眼学报, 2021, 35(6): 125-131.
[7] 刘少锋,黄桂亮,黄振云,孙昌志,罗仁忠. 扁桃体部分切除术治疗儿童阻梗性睡眠呼吸暂停综合征 86例[J]. 山东大学耳鼻喉眼学报, 2021, 35(2): 50-54.
[8] 王宏艳,王三春滕博,葛敏. 阻塞性睡眠呼吸暂停综合征与咽喉反流性疾病相关研究进展[J]. 山东大学耳鼻喉眼学报, 2020, 34(4): 134-138.
[9] 朱志玲,李松,管国芳. 人工智能在耳鼻咽喉头颈外科的运用及展望[J]. 山东大学耳鼻喉眼学报, 2020, 34(2): 115-120.
[10] 吴兆坤,朱新华. 腺样体扁桃体切除术治愈儿童阻塞性睡眠呼吸暂停综合征的偏误研究[J]. 山东大学耳鼻喉眼学报, 2019, 33(5): 148-152.
[11] 宋凡,黄炜峻,许华俊,关建,易红良. 阻塞性睡眠呼吸暂停综合征患者颈动脉弹性与氧化应激反应的关系[J]. 山东大学耳鼻喉眼学报, 2019, 33(4): 99-104.
[12] 季迪, 陈祥, 余林. 软腭平面手术联合舌骨悬吊术治疗阻塞性睡眠呼吸暂停综合征效果的Meta分析[J]. 山东大学耳鼻喉眼学报, 2019, 33(4): 124-130.
[13] 刘燕,魏萍,寇巍,胡思洁,武小芳,刘萌雅,陈成,姚红兵. 儿童腺样体肥大与耳鼻咽喉科常见疾病关系的研究进展[J]. 山东大学耳鼻喉眼学报, 2019, 33(4): 149-154.
[14] 闫志刚,张慧慧,于丹,刘岩,文连姬,王迪. 成人阻塞性睡眠呼吸暂停综合征患者认知功能障碍的诊断及治疗研究进展[J]. 山东大学耳鼻喉眼学报, 2019, 33(4): 155-161.
[15] 殷敏,程雷. 鼾症命名之我见[J]. 山东大学耳鼻喉眼学报, 2019, 33(3): 19-22.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 马宝峰,党光福 . 折叠式人工晶状体经巩膜缝线固定术16例[J]. 山东大学耳鼻喉眼学报, 2008, 22(4): 376 -378 .
[2] 封新荣,张红霞,许贞姬,曲君君 . 射频消融术治疗慢性肥厚性鼻炎[J]. 山东大学耳鼻喉眼学报, 2006, 20(3): 225 -226 .
[3] 张秋贵,何海燕 . 青岛地区变应性鼻炎常见变应原调查分析[J]. 山东大学耳鼻喉眼学报, 2006, 20(6): 520 -521 .
[4] 李海燕,赵秋良,韩晓攀,于丽 . 阻塞性睡眠呼吸暂停综合征患者自由基损伤与高血压的关系[J]. 山东大学耳鼻喉眼学报, 2006, 20(6): 527 -529 .
[5] 宋西成,张华,张庆泉 . 血循环DNA的检测与头颈部肿瘤的诊断[J]. 山东大学耳鼻喉眼学报, 2006, 20(5): 385 -387 .
[6] 詹善强,孔凡俐,操文娟,汤杰,沈菊,詹文波 . 电刀切除扁桃体236例[J]. 山东大学耳鼻喉眼学报, 2006, 20(6): 559 -560 .
[7] 张 虎,艾 琴 . 甲状腺癌再手术15例[J]. 山东大学耳鼻喉眼学报, 2007, 21(2): 166 -167 .
[8] 胡 明,李招娜,李云杰,陶祥臣 . 硬性透气性角膜接触镜对圆锥角膜的塑形作用[J]. 山东大学耳鼻喉眼学报, 2007, 21(2): 171 -173 .
[9] 娄 锋 . 喉上神经阻滞预防喉显微手术心血管反应[J]. 山东大学耳鼻喉眼学报, 2008, 22(2): 173 -175 .
[10] 陈伟雄 王跃建 曾勇 何发尧 张剑利 郑立岗 汤苏成. 胸骨上小切口无注气内镜甲状腺手术的临床体会[J]. 山东大学耳鼻喉眼学报, 2009, 23(4): 24 -26 .