山东大学耳鼻喉眼学报 ›› 2025, Vol. 39 ›› Issue (4): 151-160.doi: 10.6040/j.issn.1673-3770.0.2024.161
窦涛1,窦乃馨1,汪如1,杨芊1,管庆波1,王磊2,于春晓1
DOU Tao1, DOU Naixin1, WANG Ru1, YANG Qian1, GUAN Qingbo1, WANG Lei2, YU Chunxiao1
摘要: 目的 通过生物信息学方法分析参与高脂饮食损伤甲状腺功能的miRNA-mRNA调控网络,为早期干预脂毒性损伤甲状腺功能提供新的靶点。 方法 给予大鼠高脂饮食8周,建立甲状腺功能损伤大鼠模型,以正常饮食组为对照,Agilent芯片检测甲状腺miRNA和mRNA表达,RStudio的limma包筛选差异miRNA和mRNA。miRwalk预测差异miRNA调控的潜在下游靶基因,利用微生信网站将预测的靶基因和差异mRNA取交集,建立差异miRNA-差异mRNA网络。通过在线网站Metascape对交集mRNA进行基因本体论(gene ontology, GO)注释和京都基因和基因组百科全书(kyoto encyclopedia of genes and genomes, KEGG)通路分析。利用String在线网站进行蛋白质-蛋白质相互作用(protein-protein interaction, PPI)分析,使用Cytoscape可视化PPI网络,CytoNCA插件筛选枢纽基因。基于关键基因建立高脂饮食损伤甲状腺功能的潜在miRNA-mRNA网络。 结果 筛选出27个上调和6个下调miRNA,775个上调和543个下调mRNA,下调miRNA的靶点mRNA与芯片筛选的上调mRNA有301个重叠,上调miRNA的靶点mRNA与芯片筛选的下调mRNA有278个重叠,分别获得491和777个miRNA-mRNA对。GO和KEGG分析发现差异mRNA富集到与甲状腺激素合成和细胞增殖等相关通路。进一步筛选出Src、Pebp1、Il1b、Plcg1、Igf1、Ntrk2等10个枢纽基因,建立了包括miR-3473/Src、miR-339-3p/Igf1、miR-674-5p/Igf1、miR-339-3p/Ntrk2、miR-99b-3p/Ntrk2等的关键miRNA-mRNA调控对。 结论 miR-3473、Igf1和Ntrk2等可能作为核心miRNA和mRNA,参与调控高脂饮食损伤甲状腺功能。
中图分类号:
| [1] | 马世瞻, 赵家军. 内分泌与脂代谢[J]. 华西医学, 2018, 33(5): 491-498. doi:10.7507/1002-0179.201804027 MA Shizhan, ZHAO Jiajun. Endocrinology and lipid metabolism[J]. West China Medical Journal, 2018, 33(5): 491-498. doi:10.7507/1002-0179.201804027 |
| [2] | Zhang XH, Shao SS, Zhao LF, et al. ER stress contributes to high-fat diet-induced decrease of thyroglobulin and hypothyroidism[J]. American Journal of Physiology Endocrinology and Metabolism, 2019, 316(3): 510-518. doi:10.1152/ajpendo.00194.2018 |
| [3] | de Sousa MC, Gjorgjieva M, Dolicka D, et al. Deciphering miRNAs' action through miRNA editing[J]. International Journal of Molecular Sciences, 2019, 20(24): 6249. doi:10.3390/ijms20246249 |
| [4] | 赵静, 柏力萄, 李菲, 等. MicroRNA在甲状腺功能减退症中的作用[J]. 世界科学技术-中医药现代化, 2019, 21(2): 260-266. doi:10.11842/wst.2019.02.017 ZHAO Jing, BAI Litao, LI Fei, et al. Role of microRNA in hypothyroidism[J]. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology, 2019, 21(2): 260-266. doi:10.11842/wst.2019.02.017 |
| [5] | Guedes EC, da Silva IB, Lima VM, et al. High fat diet reduces the expression of miRNA-29b in heart and increases susceptibility of myocardium to ischemia/reperfusion injury[J]. Journal of Cellular Physiology, 2019, 234(6): 9399-9407. doi:10.1002/jcp.27624 |
| [6] | Abdollahi M, Kato M, Lanting LD, et al. Role of miR-379 in high-fat diet-induced kidney injury and dysfunction[J]. American Journal of Physiology Renal Physiology, 2022, 323(6): 686-699. doi:10.1152/ajprenal.00213.2022 |
| [7] | Sticht C, de La Torre C, Parveen A, et al. miRWalk: an online resource for prediction of microRNA binding sites[J]. PLoS One, 2018, 13(10): e0206239. doi:10.1371/journal.pone.0206239 |
| [8] | Zhou YY, Zhou B, Pache L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets[J]. Nature Communications, 2019, 10(1): 1523. doi:10.1038/s41467-019-09234-6 |
| [9] | Szklarczyk D, Gable AL, Nastou KC, et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets[J]. Nucleic Acids Research, 2021, 49(D1): 605-612. doi:10.1093/nar/gkaa1074 |
| [10] | Liu YY, Yin ZL, Wang Y, et al. Exploration and validation of key genes associated with early lymph node metastasis in thyroid carcinoma using weighted gene co-expression network analysis and machine learning[J]. Frontiers in Endocrinology, 2023, 14: 1247709. doi:10.3389/fendo.2023.1247709 |
| [11] | Chiovato L, Magri F, Carlé A. Hypothyroidism in context: where we've been and where we're going[J]. Advances in Therapy, 2019, 36(Suppl 2): 47-58. doi:10.1007/s12325-019-01080-8 |
| [12] | 中国医师协会中西医结合医师分会内分泌与代谢病学专业委员会. 成人原发性甲状腺功能减退症病证结合诊疗指南[J]. 世界中医药, 2023, 18(16): 2265-2272. doi:10.3969/j.issn.1673-7202.2023.16.002 |
| [13] | Chaker L, Razvi S, Bensenor IM, et al. Hypothyroidism [J]. Nat Rev Dis Primers, 2022, 8(1): 30. doi:10.1038/s41572-022-00357-7 |
| [14] | Benvenga S, Nordio M, Laganà AS, et al. The role of inositol in thyroid physiology and in subclinical hypothyroidism management[J]. Frontiers in Endocrinology, 2021, 12: 662582. doi:10.3389/fendo.2021.662582 |
| [15] | Jing L, Zhang Q. Intrathyroidal feedforward and feedback network regulating thyroid hormone synthesis and secretion[J]. Frontiers in Endocrinology, 2022, 13: 992883. doi:10.3389/fendo.2022.992883 |
| [16] | Riesco-eizaguirre G, Santisteban P, de La vieja A. The complex regulation of NIS expression and activity in thyroid and extrathyroidal tissues[J]. Endocrine-Related Cancer, 2021, 28(10): 141-165. doi:10.1530/ERC-21-0217 |
| [17] | Kardalas E, Sakkas E, Ruchala M, et al. The role of transforming growth factor beta in thyroid autoimmunity: current knowledge and future perspectives[J]. Reviews in Endocrine & Metabolic Disorders, 2022, 23(3): 431-447. doi:10.1007/s11154-021-09685-7 |
| [18] | Fernández-méndez C, Santisteban P. A critical balance between PAX8 and the hippo mediator TAZ determines sodium/iodide symporter expression and function[J]. Thyroid, 2022, 32(3): 315-325. doi:10.1089/thy.2021.0191 |
| [19] | Romitti M, Eski SE, Fonseca BF, et al. Single-cell trajectory inference guided enhancement of thyroid maturation in vitro using TGF-beta inhibition[J]. Frontiers in Endocrinology, 2021, 12: 657195. doi:10.3389/fendo.2021.657195 |
| [20] | Dong S, Liu QY, Jiang M, et al. Xiao-Luo-Wan treats propylthiouracil-induced goiter with hypothyroidism in rats through the PI3K-AKT/RAS pathways based on UPLC/MS and network pharmacology[J]. Journal of Ethnopharmacology, 2022, 289: 115045. doi:10.1016/j.jep.2022.115045 |
| [21] | 康春嵋, 李山, 郭志玲. 基于调控PI3K-AKT通路探讨艾灸关元穴治疗甲状腺功能减退的作用机制[J]. 世界中西医结合杂志, 2021, 16(10): 1831-1835. doi:10.13935/j.cnki.sjzx.211012 KANG Chunmei, LI Shan, GUO Zhiling. Research on the mechanism of moxibustion at Guanyuan acupoint in treating hy-pothyroidism based on regulating PI3 K-AKT pathway[J]. World Journal of Integrated Traditional and Western Medicine, 2021, 16(10): 1831-1835. doi:10.13935/j.cnki.sjzx.211012 |
| [22] | Oh JM, Ahn BC. Molecular mechanisms of radioactive iodine refractoriness in differentiated thyroid cancer: impaired sodium iodide symporter(NIS)expression owing to altered signaling pathway activity and intracellular localization of NIS[J]. Theranostics, 2021, 11(13): 6251-6277. doi:10.7150/thno.57689 |
| [23] | Russo SC, Salas-lucia F, Bianco AC. Deiodinases and the metabolic code for thyroid hormone action[J]. Endocrinology, 2021, 162(8): bqab059. doi:10.1210/endocr/bqab059 |
| [24] | Pelaz SG, Tabenero A. Src: coordinating metabolism in cancer[J]. Oncogene, 2022, 41(45): 4917-4928. doi:10.1038/s41388-022-02487-4 |
| [25] | Faria M, Domingues R, Bugalho MJ, et al. Analysis of NIS plasma membrane interactors discloses key regulation by a SRC/RAC1/PAK1/PIP5K/EZRIN pathway with potential implications for radioiodine re-sensitization therapy in thyroid cancer[J]. Cancers, 2021, 13(21): 5460. doi:10.3390/cancers13215460 |
| [26] | Rajkumar K, Nichita A, Anoor PK, et al. Understanding perspectives of signalling mechanisms regulating PEBP1 function[J]. Cell Biochemistry and Function, 2016, 34(6): 394-403. doi:10.1002/cbf.3198 |
| [27] | Giuliani C, Bucci I, Napolitano G. The role of the transcription factor nuclear factor-kappa B in thyroid autoimmunity and cancer[J]. Frontiers in Endocrinology, 2018, 9: 471. doi:10.3389/fendo.2018.00471 |
| [28] | 王芳, 陈华, 商丽红, 等. U0126对子宫内膜异位症大鼠MEK/ERK/NF-κB通路及增殖侵袭的影响[J]. 山东大学学报(医学版), 2021, 59(9): 148-154. doi:10.6040/j.issn.1671-7554.0.2021.0865 WANG Fang, CHEN Hua, SHANG Lihong, et al. Effects of U0126 on MEK/ERK/NF-κB pathway, proliferation and invasion in rats with endometriosis[J]. Journal of Shandong University(Health Sciences), 2021, 59(9): 148-154. doi:10.6040/j.issn.1671-7554.0.2021.0865 |
| [29] | Xu HS, Zhang AK, Han XY, et al. ITGB2 as a prognostic indicator and a predictive marker for immunotherapy in gliomas[J]. Cancer Immunology, Immunotherapy, 2022, 71(3): 645-660. doi:10.1007/s00262-021-03022-2 |
| [30] | Miko s H, Miko s M, Obara-moszy Ska M, et al. The role of the immune system and cytokines involved in the pathogenesis of autoimmune thyroid disease(AITD)[J]. Endokrynologia Polska, 2014, 65(2): 150-155. doi:10.5603/EP.2014.0021 |
| [31] | Tao PF, Han X, Wang QT, et al. A gain-of-function variation in PLCG1 causes a new immune dysregulation disease[J]. Journal of Allergy and Clinical Immunology, 2023, 152(5): 1292-1302. doi:10.1016/j.jaci.2023.06.020 |
| [32] | Brivio P, Sbrini G, Corsini G, et al. Chronic restraint stress inhibits the response to a second hit in adult male rats: a role for BDNF signaling[J]. International Journal of Molecular Sciences, 2020, 21(17): 6261. doi:10.3390/ijms21176261 |
| [33] | Smith TJ. Insulin-like growth factor pathway and the thyroid[J]. Frontiers in Endocrinology, 2021, 12: 653627. doi:10.3389/fendo.2021.653627 |
| [34] | López-márouez A, Carrasco-López C, Fernández-Méndez C, et al. Unraveling the complex interplay between transcription factors and signaling molecules in thyroid differentiation and function, from embryos to adults[J]. Frontiers in Endocrinology, 2021, 12: 654569. doi:10.3389/fendo.2021.654569 |
| [35] | 梁伟, 孙禹, 陈丽新, 等. 消瘰丸基于PI3K/Akt/mTORC1通路对实验性甲状腺肿大鼠的干预机制[J]. 中国实验方剂学杂志, 2022, 28(8): 30-36. doi:10.13422/j.cnki.syfjx.20220603 LIANG Wei, SUN Yu, CHEN Lixin, et al. Intervention mechanism of xiaoluowan on experimental goiter rats based on PI3K/Akt/mTORC1 pathway[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2022, 28(8): 30-36. doi:10.13422/j.cnki.syfjx.20220603 |
| [36] | Cheng HM, Xing MM, Zhou YP, et al. HSP90β promotes osteoclastogenesis by dual-activation of cholesterol synthesis and NF-κB signaling[J]. Cell Death and Differentiation, 2023, 30(3): 673-686. doi:10.1038/s41418-022-01071-3 |
| [37] | Ho PTB, Clark IM, Le LTT. MicroRNA-based diagnosis and therapy[J]. International Journal of Molecular Sciences, 2022, 23(13): 7167. doi:10.3390/ijms23137167 |
| [1] | 王惟一,时蕾,张志玉,张贵玲,时光刚. 高脂饮食对过敏性鼻炎小鼠致敏影响和肠道菌群改变的研究[J]. 山东大学耳鼻喉眼学报, 2023, 37(3): 21-29. |
| [2] | 李超友,王安洋,薛刚. 中心型肥胖与头颈癌的关系[J]. 山东大学耳鼻喉眼学报, 2022, 36(2): 120-125. |
|