Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2020, Vol. 34 ›› Issue (6): 129-134.doi: 10.6040/j.issn.1673-3770.0.2019.604

Previous Articles     Next Articles

Progress in the research on the roles of invadopodia and metalloproteinase-14 in tumorigenesis and cancer development

PEI Xueyan1,2Overview,WANG Yan1,2Guidance   

  1. Department of Otolaryngology & Head and Neck Surgery, the First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
  • Published:2021-01-11

Abstract: Malignant tumors are still enigmatic in the field of medical science. The prognosis of cancer patients largely depends on whether the primary tumor has metastasized or not. Matrix metalloproteinase-14(MMP-14)is involved in physiological functions of normal cells and in tumor-related processes, such as cell migration, inflammation, invasion, metastasis, and angiogenesis. Invadopodia are protrusions of the plasma membranes of malignant tumor cells, with the ability to degrade the extracellular matrix. Thus, MMP-14 and invadopodia have critical roles in tumorigenesis and cancer progression.

Key words: MMP-14, Invadopodia, Cancer, Invasion and metastasis

CLC Number: 

  • R737
[1] Kudelski J, Mynarczyk G, Darewicz B, et al. Dominative role of MMP-14 over MMP-15 in human urinary bladder carcinoma on the basis of its enhanced specific activity[J]. Medicine(Baltimore), 2020, 99(7): e19224. doi:10.1097/MD.0000000000019224.
[2] Duan FJ, Peng Z, Yin JJ, et al. Expression of MMP-14 and prognosis in digestive system carcinoma: a meta-analysis and databases validation[J]. J Cancer, 2020, 11(5): 1141-1150. doi:10.7150/jca.36469.
[3] Yuan HP, Wei R, Xiao YH, et al. RHBDF1 regulates APC-mediated stimulation of the epithelial-to-mesenchymal transition and proliferation of colorectal cancer cells in part via the Wnt/β-catenin signalling pathway[J]. Exp Cell Res, 2018, 368(1): 24-36. doi:10.1016/j.yexcr.2018.04.009.
[4] Liu G, Bao YT, Liu CH, et al. IKKε phosphorylates kindlin-2 to induce invadopodia formation and promote colorectal cancer metastasis[J]. Theranostics, 2020, 10(5): 2358-2373. doi:10.7150/thno.40397.
[5] Kumar S, Das A, Barai A, et al. MMP secretion rate and inter-invadopodia spacing collectively govern cancer invasiveness[J]. Biophys J, 2018, 114(3): 650-662. doi:10.1016/j.bpj.2017.11.3777.
[6] Yang J, Kasberg WC, Celo A, et al. Post-translational modification of the membrane type 1 matrix metalloproteinase(MT1-MMP)cytoplasmic tail impacts ovarian cancer multicellular aggregate dynamics[J]. J Biol Chem, 2017, 292(32): 13111-13121. doi:10.1074/jbc.M117.800904.
[7] Planchon D, Rios Morris E, Genest M, et al. MT1-MMP targeting to endolysosomes is mediated by upregulation of flotillins[J]. J Cell Sci, 2018, 131(17): jcs218925. doi:10.1242/jcs.218925.
[8] Lodillinsky C, Infante E, Guichard A, et al. P63/MT1-MMP Axis is required for in situ to invasive transition in basal-like breast cancer[J]. Oncogene, 2016, 35(3): 344-357. doi:10.1038/onc.2015.87.
[9] Kajiho H, Kajiho Y, Frittoli E, et al. RAB2A controls MT1-MMP endocytic and E-cadherin polarized Golgi trafficking to promote invasive breast cancer programs[J]. EMBO Rep, 2016, 17(7): 1061-1080. doi:10.15252/embr.201642032.
[10] Loskutov YV, Kozyulina PY, Kozyreva VK, et al. NEDD9/Arf6-dependent endocytic trafficking of matrix metalloproteinase 14: a novel mechanism for blocking mesenchymal cell invasion and metastasis of breast cancer[J]. Oncogene, 2015, 34(28): 3662-3675. doi:10.1038/onc.2014.297.
[11] Waheed S, Dorjbal B, Hamilton CA, et al. Progesterone and calcitriol reduce invasive potential of endometrial cancer cells by targeting ARF6, NEDD9 and MT1-MMP[J]. Oncotarget, 2017, 8(69): 113583-113597. doi:10.18632/oncotarget.22745.
[12] Wang ZQ, Zhang F, He JQ, et al. Binding of PLD2-generated phosphatidic acid to KIF5B promotes MT1-MMP surface trafficking and lung metastasis of mouse breast cancer cells[J]. Dev Cell, 2017, 43(2): 186-197.e7. doi:10.1016/j.devcel.2017.09.012.
[13] Baker TM, Waheed S, Syed V. RNA interference screening identifies clathrin-B and cofilin-1 as mediators of MT1-MMP in endometrial cancer[J]. Exp Cell Res, 2018, 370(2): 663-670. doi:10.1016/j.yexcr.2018.07.031.
[14] Ager EI, Kozin SV, Kirkpatrick ND, et al. Blockade of MMP14 activity in murine breast carcinomas: implications for macrophages, vessels, and radiotherapy[J]. J Natl Cancer Inst, 2015, 107(4): djv017. doi:10.1093/jnci/djv017.
[15] Guangfei C, Feng C, Zhanwei D, et al. MMP14 predicts a poor prognosis in patients with colorectal cancer[J]. Human Pathology, 2019, 83(1): 36-42. doi: 10.1016/j.humpath.2018.03.030.
[16] 吴静, 刘业海. 头颈部鳞状细胞癌的靶向治疗研究进展[J]. 山东大学耳鼻喉眼学报, 2018, 32(5): 97-102. doi:10.6040/j.issn.1673-3770.0.2018.058. WU Jing, LIU Yehai. Targeted therapy for head and neck squamous cell carcinoma[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2018, 32(5): 97-102. doi:10.6040/j.issn.1673-3770.0.2018.058.
[17] 王小清, 王金莲, 林帅, 等. miR-369-3p靶向MMP14调节乳头状甲状腺癌细胞侵袭、迁移和上皮间质转化的作用[J]. 中国免疫学杂志, 2019, 35(21): 2576-2581. doi: 10.3969/j.issn.1000-484X.2019.21.004. WANG Xiaoqing, WANG Jinlian, LIN Shuai, et al. Effect of miR-369-3p targeting MMP14 on invasion, migration and epithelial-mesenchymal transition of papillary thyroid carcinoma cells[J]. Chinese Journal of Immunology, 2019, 35(21): 2576-2581. doi: 10.3969/j.issn.1000-484X.2019.21.004.
[18] Nair RP, Timiri Shanmugam PS, Sunavala-Dossabhoy G. Discretionary transduction of MMP-sensitized tousled in head and neck cancer[J]. Mol Ther Oncolytics, 2019, 14: 57-65. doi:10.1016/j.omto.2019.02.003.
[19] 高浩然, 佟德惠, 黄泽清, 等. RECK、MMP-14及VEGF在喉癌中的表达及临床意义[J]. 中国医药导报, 2016, 13(2): 85-88. doi: CNKI:SUN:YYCY.0.2016-02-024. GAO Haoran, TONG Dehui, HUANG Zeqing, et al. Expression and clinical significance of RECK, MMP-14 and VEGF pro-tein in laryngeal carcinoma[J]. China Medical Herald, 2016, 13(2): 85-88. doi: CNKI:SUN:YYCY.0.2016-02-024.
[20] Eddy RJ, Weidmann MD, Sharma VP, et al. Tumor cell invadopodia: invasive protrusions that orchestrate metastasis[J]. Trends Cell Biol, 2017, 27(8): 595-607. doi:10.1016/j.tcb.2017.03.003.
[21] Castro-Castro A, Marchesin V, Monteiro P, et al. Cellular and molecular mechanisms of MT1-MMP-dependent cancer cell invasion[J]. Annu Rev Cell Dev Biol, 2016, 32: 555-576. doi:10.1146/annurev-cellbio-111315-125227.
[22] Esmaeili Pourfarhangi K, Cardenas de la Hoz E, Cohen AR, et al. Contact guidance is cell cycle-dependent[J]. APL Bioeng, 2018, 2(3): 031904. doi:10.1063/1.5026419.
[23] Bayarmagnai B, Perrin L, Pourfarhangi KE, et al. Invadopodia-mediated ECM degradation is enriched in the G1 phase of the cell cycle[J]. Biologists Ltd, 2019, v.18:1-46. doi: 10.1242/jcs.227116.
[24] Di Martino J, Henriet E, Ezzoukhry Z, et al. The microenvironment controls invadosome plasticity[J]. J Cell Sci, 2016, 129(9): 1759-1768. doi:10.1242/jcs.182329.
[25] Zhao P, Xu YL, Wei Y, et al. The CD44s splice isoform is a central mediator for invadopodia activity[J]. J Cell Sci, 2016, 129(7): 1355-1365. doi:10.1242/jcs.171959.
[26] McFarlane S, McFarlane C, Montgomery N, et al. CD44-mediated activation of α5β1-integrin, cortactin and paxillin signaling underpins adhesion of basal-like breast cancer cells to endothelium and fibronectin-enriched matrices[J]. Oncotarget, 2015, 6(34): 36762-36773. doi:10.18632/oncotarget.5461.
[27] Díaz B, Yuen A, Iizuka S, et al. Notch increases the shedding of HB-EGF by ADAM12 to potentiate invadopodia formation in hypoxia[J]. J Cell Biol, 2013, 201(2): 279-292. doi:10.1083/jcb.201209151.
[28] Wang YR, Wang HX, Li JF, et al. Direct visualization of the phenotype of hypoxic tumor cells at single cell resolution in vivo using a new hypoxia probe[J]. Intravital, 2016, 5(2): e1187803. doi:10.1080/21659087.2016.1187803.
[29] Li HM, Yang JG, Liu ZJ, et al. Blockage of glycolysis by targeting PFKFB3 suppresses tumor growth and metastasis in head and neck squamous cell carcinoma[J]. J Exp Clin Cancer Res, 2017, 36(1): 7. doi:10.1186/s13046-016-0481-1.
[30] Jimenez L, Jayakar SK, Ow TJ, et al. Mechanisms of invasion in head and neck cancer[J]. Arch Pathol Lab Med, 2015, 139(11): 1334-1348. doi:10.5858/arpa.2014-0498-RA.
[31] Qin Z, Feng JF, Liu YS, et al. PDGF-D promotes dermal fibroblast invasion in 3-dimensional extracellular matrix via Snail-mediated MT1-MMP upregulation[J]. Tumour Biol, 2016, 37(1): 591-599. doi:10.1007/s13277-015-3828-x.
[32] Hoshino D, Koshikawa N, Suzuki T, et al. Establishment and validation of computational model for MT1-MMP dependent ECM degradation and intervention strategies[J]. PLoS Comput Biol, 2012, 8(4): e1002479. doi:10.1371/journal.pcbi.1002479.
[33] Yu XZ, Zech T, McDonald L, et al. N-WASP coordinates the delivery and F-actin-mediated capture of MT1-MMP at invasive pseudopods[J]. J Cell Biol, 2012, 199(3): 527-544. doi:10.1083/jcb.201203025.
[34] Lafleur MA, Mercuri FA, Ruangpanit N, et al. Type I collagen abrogates the clathrin-mediated internalization of membrane type 1 matrix metalloproteinase(MT1-MMP)via the MT1-MMP hemopexin domain[J]. J Biol Chem, 2006, 281(10): 6826-6840. doi:10.1074/jbc.M513084200.
[35] Qiang L, Cao H, Chen J, et al. Pancreatic tumor cell metastasis is restricted by MT1-MMP binding protein MTCBP-1[J]. J Cell Biol, 2019, 218(1): 317-332. doi:10.1083/jcb.201802032.
[36] El Azzouzi K, Wiesner C, Linder S. Metalloproteinase MT1-MMP islets act as memory devices for podosome reemergence[J]. J Cell Biol, 2016, 213(1): 109-125. doi:10.1083/jcb.201510043.
[37] Pratt J, Iddir M, Bourgault S, et al. Evidence of MTCBP-1 interaction with the cytoplasmic domain of MT1-MMP: Implications in the autophagy cell index of high-grade glioblastoma[J]. Mol Carcinog, 2016, 55(2): 148-160. doi:10.1002/mc.22264.
[38] Noll B, Benz D, Frey Y, et al. DLC3 suppresses MT1-MMP-dependent matrix degradation by controlling RhoB and actin remodeling at endosomal membranes[J]. J Cell Sci, 2019, 132(11): jcs223172. doi:10.1242/jcs.223172.
[1] SONG QingOverview,SONG XichengGuidance. Research progress of anlotinib combination therapy in cancer treatment [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 106-112.
[2] LI Lijie, TIAN Xiufen. Forty cases of early glottic cancer treated by CO2 laser surgery combined with radiofrequency ablation [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(4): 79-85.
[3] WANG MeiOverview,LI ZhihaiGuidance. Laryngeal cancer stem cells: potential therapeutic targets for overcoming multidrug resistance [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(4): 120-128.
[4] WANG Xiaoting, CHEN Zhengnong, YI Hongliang. Transcriptomic analysis of glutamine deprivation on laryngeal carcinoma cells [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 26-31.
[5] CHENG Yao, ZHANG Zhen, YANG Ji, FENG Chengmin, DENG Qicheng, ZHANG Xi, ZHAO Rui, ZHU Xin, WU Junzhi, LIU Hai, DENG Shishan. Expression and clinical significance of CIP2A in hypopharyngeal carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 40-44.
[6] LI Chaoyou, WANG Anyang,XUE Gang. The relationship between central obesity and head and neck cancer [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 120-125.
[7] WANG Junxin,SUN Yan. Research progress of miRNA-29b involved in EMT-related signaling pathway regulation [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(6): 132-137.
[8] LI Yanjie, JIA Jian, YANG Ping, WAN Baoluo. Study on the value of tumor abnormal protein in clinical diagnosis of laryngeal carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(5): 70-74.
[9] ZHANG Yiyi,XUE Gang, JIN Chunting. Research progress of exosomes in thyroid cancers [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(2): 131-135.
[10] LI Wenjing,LIU Ming. Research progress on the relationship between the C2H2 zinc finger protein family and laryngeal cancer [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(1): 125-130.
[11] . The swallowing function recovery study on tongue flap after horizontal hemilaryngectomy [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(5): 127-131.
[12] CHEN Haibing, WEI Ya'nan, XU Xiaoquan, CHEN Xi. Prediction of cervical lymph node metastasis in papillary thyroid cancer based on XGBoost artificial intelligence and enhanced computed tomography [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(3): 40-45.
[13] ZHENG Guibin, ZHANG Guojun, MA Chi, WEI Shujian, SUN Haiqing, WU Guochang, GUO Yawen, ZHENG Haitao, SONG Xicheng. The safety and feasibility of transoral endoscopic thyroidectomy vestibular approach(TOETVA)in papillary thyroid cancer [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(3): 58-63.
[14] WANG Jiashuo, GUO Xing, YAN Aihui. Giant cyst formation from lymph node metastasis in papillary thyroid cancer: a case study [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(3): 111-113.
[15] XU Jinjing, HU Jinghua, WU Yuanqing, DENG Yi, YU Weiwei. Applications of CO2 laser microsurgery on laryngeal precancerous lesions and early glottic laryngeal carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(3): 129-133.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Changliang,HUANG Zhiwu,YAO Hangqi,ZHU Yong,SNU Yi . Study on auditory brainstem response[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(1): 9 -13 .
[2] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(1): 89 -89 .
[3] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(1): 90 -91 .
[4] LIU Da-yu,PAN Xin-liang,LEI Da-peng,ZHANG Li-qiang,LUAN Xin-yong . Surgical treatment for medial wall pyriform sinus cancer[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2007, 21(1): 8 -11 .
[5] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(2): 188 -188 .
[6] LIU Yan,LIU Xin-yi,WANG Jin-ping,LI Da-jian . Measurement of the posterior tympanum and its clinical significance [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 218 -221 .
[7] ZHAO Min,WANG Shou-sen,ZHEN Ze-nian,CHEN Xian-ming,WANG Mao-xin . Sphenoid sinus and trans-sphenoid surgery under nasal endoscopy and microscopy [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 244 -245 .
[8] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 252 -252 .
[9] WANG Hong-xia,WANG Peng-cheng . Expression of NSE,S100 and GFAP in retinoblastoma and its clinical significance[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 263 -264 .
[10] HUANG Fang,HUANG Hai-qiong,HUANG Jian-qiang,HE He-fan . Bronchoscopic video supervision system in infant bronchial foreign bodies[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(3): 276 -277 .