Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2022, Vol. 36 ›› Issue (3): 171-180.doi: 10.6040/j.issn.1673-3770.0.2021.556

Previous Articles     Next Articles

Bioinformatics analysis of gene expression profile in pediatric patients with chronic rhinosinusitis

LI Lin1, GAO Zhengwen2, CUI Nan3, SUN Jianping4, HUANG Xianming5, CUI Jing4   

  1. 1. Department of Otolaryngology, Qingdao Women and Children's Hospital, Qingdao 266011, Shandong, China;
    2. Department of Anesthesiology, Guzhen Orthopedic Hospital of Chengyang, Qingdao 266000, Shandong, China;
    3. Hospital Management Institute, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong, China;
    4. Qingdao Municipal Center for Disease Control and Prevention / Qingdao Institute of Preventive Medicine, Qingdao 266033, Shandong, China;
    5. Department of Surgery, Qingdao Haici Medical Group, Qingdao 266000, Shandong, China
  • Published:2022-06-15

Abstract: Objective We performed a preliminary bioinformatics analysis of genes from pediatric patients with chronic rhinosinusitis(CRS)to provide a scientific basis for preventing and treating CRS. Methods Data of pediatric patients with CRS were downloaded from Gene Expression Omnibus(GEO)database. Differentially expressed genes(DEGs)were screened in sinus mucosa tissue from pediatric patients with CRS and normal children. DEGs associated with the Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway were analyzed using the DAVID tool and Gene Set Enrichment Analysis(GESA). Protein-protein interaction(PPI)network associated with DEGs were analyzed using STRING and Cytoscape. Results Ninety-two DEGs were screened using adjusted P<0.05 and∣log2 FC∣>2. Of these DEGs, 57 were up-regulated, and 35 were down-regulated. GO analysis showed that up-regulated DEGs were enriched in phagocytosis, β cell receptor signaling pathway, bacterial defense response, immune response, and the external side of the plasma membrane. KEGG pathway analysis showed that up-regulated DEGs were enriched in salivary secretion, and down-regulated DEGs were enriched in retinol metabolism, chemical carcinogenesis, and tyrosine metabolism. All 49 DEGs were involved in the PPI network, with 61 edges, an average protein node degree of 1.51, and a local clustering coefficient of 0.387. The PPI enrichment had a significant difference(P<0.001). The top 10 hub genes were ASPM, NCAPG, TPX2, MCM10, TOP2A, STATH, ADH1C, ADH6, CYP26A1, and UGT2A2. Except for STATH, the hub genes were all in Modules 1 and 2. Conclusion The CRS pathogenesis in pediatric patients is mediated by interleukins, inflammation, immune response, β cell receptor signaling pathway, salivary secretion, and bacterial defense response by hub genes. Further studies are required to explore the putative mechanisms in pediatric patients with CRS.

Key words: Chronic rhinosinusitis, Pediatric patients, Gene ontology analysis, KEGG analysis, Protein-protein interaction network

CLC Number: 

  • R765.4
[1] Heath J, Hartzell L, Putt C, et al. Chronic rhinosinusitis in children: pathophysiology, evaluation, and medical management[J]. Curr Allergy Asthma Rep, 2018, 18(7): 37. doi:10.1007/s11882-018-0792-8.
[2] 中华耳鼻咽喉头颈外科杂志编辑委员会鼻科组, 中华医学会耳鼻咽喉头颈外科学分会鼻科学组. 中国慢性鼻窦炎诊断和治疗指南(2018)[J]. 中华耳鼻咽喉头颈外科杂志, 2019, 54(2): 81-100. doi:10.3760/cma.j.issn.1673-0860.2019.02.001.
[3] Cho SH, Hamilos DL, Han DH, et al. Phenotypes of chronic rhinosinusitis[J]. J Allergy Clin Immunol Pract, 2020, 8(5): 1505-1511. doi:10.1016/j.jaip.2019.12.021.
[4] 李华斌, 曹玉洁. 儿童鼻窦炎的临床诊疗进展[J]. 山东大学耳鼻喉眼学报, 2019, 33(6): 16-19. doi:10.6040/j.issn.1673-3770.1.2019.057. LI Huabin, CAO Yujie. Diagnosis and treatment of pediatric rhinosinusitis[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(6): 16-19.doi:10.6040/j.issn.1673-3770.1.2019.057.
[5] Mahdavinia M, Grammer LC 3rd. Chronic rhinosinusitis and age: is the pathogenesis different? [J]. Expert Rev Anti Infect Ther, 2013, 11(10): 1029-1040. doi:10.1586/14787210.2013.839380.
[6] Snidvongs K, Sangubol M, Poachanukoon O. Pediatric versus adult chronic rhinosinusitis[J]. Curr Allergy Asthma Rep, 2020, 20(8): 29. doi:10.1007/s11882-020-00924-6.
[7] Ghogomu N, Kern R. Chronic rhinosinusitis: the rationale for current treatments[J]. Expert Rev Clin Immunol, 2017, 13(3): 259-270. doi:10.1080/1744666X.2016.1220833.
[8] 刘佳, 付勇. 儿童慢性鼻窦炎的外科治疗研究进展[J]. 山东大学耳鼻喉眼学报, 2019, 33(6): 29-33. doi:10.6040/j.issn.1673-3770.1.2019.060. LIU Jia, FU Yong. Advances in the surgical treatment of pediatric patients with chronic rhinosinusitis[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(6): 29-33.doi:10.6040/j.issn.1673-3770.1.2019.060.
[9] Gilani S, Shin JJ. The burden and visit prevalence of pediatric chronic rhinosinusitis[J]. Otolaryngol Head Neck Surg, 2017, 157(6): 1048-1052. doi:10.1177/0194599817721177.
[10] Bhattacharyya N, Villeneuve S, Joish VN, et al. Cost burden and resource utilization in patients with chronic rhinosinusitis and nasal polyps[J]. Laryngoscope, 2019, 129(9): 1969-1975. doi:10.1002/lary.27852.
[11] 陈钢, 于洋, 王林娥. 慢性鼻-鼻窦炎伴鼻息肉基因表达谱的生物信息学分析[J]. 激光生物学报, 2020, 29(2): 161-167. doi:10.3969/j.issn.1007-7146.2020.02.010. CHEN Gang, YU Yang, WANG Line. Bioinformatics analysis of the gene expression profile in chronic rhinosinusitis with nasal polyps[J]. Acta Laser Biology Sinica, 2020, 29(2): 161-167. doi:10.3969/j.issn.1007-7146.2020.02.010.
[12] Ryu G, Kim DK, Dhong HJ, et al. Immunological characteristics in refractory chronic rhinosinusitis with nasal polyps undergoing revision surgeries[J]. Allergy Asthma Immunol Res, 2019, 11(5): 664-676. doi:10.4168/aair.2019.11.5.664.
[13] Chen FH, Hong HY, Sun YQ, et al. Nasal interleukin 25 as a novel biomarker for patients with chronic rhinosinusitis with nasal polyps and airway hypersensitiveness: a pilot study[J]. Ann Allergy Asthma Immunol, 2017, 119(4): 310-316.e2. doi:10.1016/j.anai.2017.07.012.
[14] Tsybikov NN, Egorova EV, Kuznik BI, et al. Neuron-specific enolase in nasal secretions as a novel biomarker of olfactory dysfunction in chronic rhinosinusitis[J]. Am J Rhinol Allergy, 2016, 30(1): 65-69. doi:10.2500/ajra.2016.30.4264.
[15] Drake VE, Rafaels N, Kim J. Peripheral blood eosinophilia correlates with hyperplastic nasal polyp growth[J]. Int Forum Allergy Rhinol, 2016, 6(9): 926-934. doi:10.1002/alr.21793.
[16] Yu JQ, Kang X, Xiong YP, et al. Gene expression profiles of circular RNAs and microRNAs in chronic rhinosinusitis with nasal polyps[J]. Front Mol Biosci, 2021, 8: 643504. doi:10.3389/fmolb.2021.643504.
[17] Kartush AG, Schumacher JK, Shah R, et al. Biologic agents for the treatment of chronic rhinosinusitis with nasal polyps[J]. Am J Rhinol Allergy, 2019, 33(2): 203-211. doi:10.1177/1945892418814768.
[18] Bachert C, Han JK, Desrosiers M, et al. Efficacy and safety of dupilumab in patients with severe chronic rhinosinusitis with nasal polyps(liberty np sinus-24 and liberty np sinus-52): results from two multicentre, randomised, double-blind, placebo-controlled, parallel-group phase 3 trials[J]. Lancet, 2019, 394(10209): 1638-1650. doi:10.1016/S0140-6736(19)31881-1.
[19] Gevaert P, Omachi TA, Corren J, et al. Efficacy and safety of omalizumab in nasal polyposis: 2 randomized phase 3 trials[J]. J Allergy Clin Immunol, 2020, 146(3): 595-605. doi:10.1016/j.jaci.2020.05.032.
[20] Paramasivan S, Bassiouni A, Shiffer A, et al. The international sinonasal microbiome study: a multicentre, multinational characterization of sinonasal bacterial ecology[J]. Allergy, 2020, 75(8): 2037-2049. doi:10.1111/all.14276.
[21] Man WH, de Steenhuijsen Piters WAA, Bogaert D. The microbiota of the respiratory tract: gatekeeper to respiratory health[J]. Nat Rev Microbiol, 2017, 15(5): 259-270. doi:10.1038/nrmicro.2017.14.
[22] Drago L, Pignataro L, Torretta S. Microbiological aspects of acute and chronic pediatric rhinosinusitis[J]. J Clin Med, 2019, 8(2): E149. doi:10.3390/jcm8020149.
[23] Welp AL, Bomberger JM. Bacterial community interactions during chronic respiratory disease[J]. Front Cell Infect Microbiol, 2020, 10: 213. doi:10.3389/fcimb.2020.00213.
[24] Gu X, Yao XC, Liu DT. Up-regulation of microRNA-335-5p reduces inflammation via negative regulation of the TPX2-mediated AKT/GSK3β signaling pathway in a chronic rhinosinusitis mouse model[J]. Cell Signal, 2020, 70: 109596. doi:10.1016/j.cellsig.2020.109596.
[25] Vergadi E, Ieronymaki E, Lyroni K, et al. Akt signaling pathway in macrophage activation and M1/M2 polarization[J]. J Immunol, 2017, 198(3): 1006-1014. doi:10.4049/jimmunol.1601515.
[1] AO Tian,CHENG Lei. An endotype study of chronic rhinosinusitis with nasal polyps and precise control and treatment under the guidance [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 7-14.
[2] YAO Shuang,LOU Hongfei. Advances in endotypes and precision medicine in chronic rhinosinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 20-29.
[3] SHI Shuai, ZHENG Quan,CHENG Lei. Research advances of dupilumab in the treatment of chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 36-42.
[4] WANG Huan, HU Li,YU Hongmeng. Research progress of olfactory dysfunction in chronic rhinosinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 43-49.
[5] YI Ruonan,CHEN Fuquan. Eosinophils and Olfactory Dysfunction [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 50-55.
[6] GU Yu, WAN Xin,XIAO Zi'an. The interaction between neutrophils and eosinophils in chronic rhinosinusitis and the implications on treatment options [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 56-63.
[7] LIN Hai, ZHU Ying,ZHANG Weitian. The roles of ion channels in the pathogenesis of chronic rhinosinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 64-70.
[8] QIAO Xinjie,. Research progress on the signal transduction pathway and other factors related to epithelial-mesenchymal transformation in chronic rhinosinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 71-77.
[9] HUANG Danyi, ZHANG Ting,CHEN Jing, ZHANG Wei. Progress of research regarding the role of the epithelial barrier in chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 78-83.
[10] LI Jiani, ZHU Dongdong,MENG Cuida. The role of epigenetics in the pathogenesis of chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 84-91.
[11] CAO Xuan,XIAO Xuping, LI Yunqiu. Advances in the application of hyaluronic acid in chronic sinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 104-109.
[12] WANG Na,CHAI Xiangbin. Research progress on prostate-derived ETS factor in asthma and inflammatory diseases of the nasal mucosa [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 136-141.
[13] LIU Yitong, ZHOU Suizi,QIU Qianhui. Research progress on NLRP3 inflammasome in chronic rhinosinusitis and allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 142-146.
[14] CHEN Shiqin, WEI Pingcun, HU Yunlong, HU Jinwang. Effects of three different nasal uses of glucocorticoid on mucosal outcome after endoscopic sinus surgery [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 195-201.
[15] LIN Manqing, ZHOU Min, CHEN Tengyu, LI-Dan, FANG Caishan, WANG Ruizhi, ZHU Jinxiang, RUAN-Yan, XU Huixian, WANG Peiyuan. Meta-analysis of the efficacy and safety of traditional Chinese medicine for nasal irrigation in the treatment of chronic rhinosinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 209-225.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HE Shou-huan,CHEN Bin,YIN Shan-kai,SU Kai-ming,JIANG Xiao . Morphological changes of the upper airway in OSAHS patients with UPPP
[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(5): 385 -388 .
[2] SONG Xi-cheng,ZHANG Qing-quan,XIA Yong-hong,LIU Lu-yi, YU Lu-xin,WANG Gao,JIANG Xiu-liang . Post-operative ICU monitoring and nursing for patients with OSAHS[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(5): 389 -392 .
[3] XUE Wei-guo,SUN Jie,JIN Zheng,SHI Wen-bin,XIN Lu,LIN Guo-Jing,LI Jia-yun . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2006, 20(4): 300 -303 .
[4] ZHANG Qing-quan,LI Xin-min,WANG Qiang,WANG Yong-fu . Some experience of the endoscopy treatment of maxillary sinus lesion with the canine tooth fossa approach[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2007, 21(1): 38 -39 .
[5] DONG Pin,LI Xiao-yan,TU Li-qiang,MENG Qing-hong,WANG Sang,XIE Jin,JIANG Yan . Reconstruction for advanced hypopharyngeal carcinoma and laryngeal recurrent carcinoma[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2007, 21(5): 385 -387 .
[6] JIANG Shao-hong,ZHU Yu-hong,WANG Qiang,SONG Xi-cheng . Intractable primary epistaxis: a report of 101 cases[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2007, 21(6): 542 -544 .
[7] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(1): 74 -77 .
[8] LEIXun, LIU Qianghe, KONG Zhongyu, XIANG Qiu, GENG WANping, HUANG Hui, DONG Yiyuan, LIU Fangxian. ARelationship between expression of Survivin and radiosensitization effect of EGCG in xenotransplanted nasopharyngeal carcinoma[J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2009, 23(1): 6 -9 .
[9] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2009, 23(2): 73 -74 .
[10] . [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2010, 24(01): 29 -33 .