Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2025, Vol. 39 ›› Issue (3): 1-10.doi: 10.6040/j.issn.1673-3770.0.2024.509

• Shanghai Sixth Peoples Hospital Otorhinolaryngology & Head and Neck Surgery Department dedicated to “120th Anniversary of the Sixth Hospital” Commemorative Theme •    

CAMK4-mediated oxidative stress injury in auditory central neurons induced by bilirubin

KE Bingbing1, CHEN Ming1, WANG Hongyang2, LI Chunyan1, YIN Shankai1   

  1. 1. Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China2. Department of Audiology and Vestibular Medicine, College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, National Clinical Research Centerfor Otolaryngologic Diseases, Key Labof Hearing Science, Ministry of Education, Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing 100853, China
  • Published:2025-06-04

Abstract: Objective The present study aims to investigate the role of calcium/calmodulin-dependent protein kinase 4(CAMK4)in bilirubin-mediated auditory central neurotoxicity. Methods The binding ability between CAMK4 and bilirubin was assessed using molecular docking and micro-scale thermophoresis(MST). The expression of CAMK4 in the cochlear nucleus was detected by immunofluorescence staining on paraffin sections. Primary cochlear nucleus neurons were cultured in vitro and treated with bilirubin(25 μmol/L)or bilirubin combined with the CAMK4 inhibitor KN-93(1 μmol/L). The neuronal ROS levels, mitochondrial membrane potential changes, Annexin V/PI staining, and live/dead cell staining were then evaluated. Results The molecular docking analysis revealed that the binding energy between bilirubin and CAMK4 was -9.71 kcal/mol, and the MST analysis gave a dissociation constant of(1.294 4±1.080 3)μmol/L, suggesting a strong binding affinity between the two. In the cochlear nucleus, CAMK4 was predominantly expressed in neurons. In vitro experiments demonstrated that the CAMK4 inhibitor KN-93 significantly suppressed bilirubin-induced ROS accumulation, mitochondrial membrane potential decline, late-stage apoptosis, and reduced cell survival in cochlear nucleus neurons. Conclusion CAMK4 has been demonstrated to play a crucial role in bilirubin-mediated oxidative stress injury in auditory central neurons.

Key words: Calcium/calmodulin-dependent protein kinase IV, bilirubin, neurotoxicity, oxidative stress

CLC Number: 

  • R764.4
[1] World Health Organization. World report on hearing [M]. Geneva: World Health Organization, 2021
[2] Watchko JF, Tiribelli C. Bilirubin-induced neurologic damage: mechanisms and management approaches[J]. N Engl J Med, 2013, 369(21): 2021-2030. doi:10.1056/nejmra1308124
[3] Qian S, Kumar P, Testai FD. Bilirubin encephalopathy[J]. Curr Neurol Neurosci Rep, 2022, 22(7): 343-353. doi:10.1007/s11910-022-01204-8
[4] Hansen TWR, Wong RJ, Stevenson DK. Molecular physiology and pathophysiology of bilirubin handling by the blood, liver, intestine, and brain in the newborn[J]. Physiol Rev, 2020, 100(3): 1291-1346. doi:10.1152/physrev.00004.2019
[5] Lai K, Song XL, Shi HS, et al. Bilirubin enhances the activity of ASIC channels to exacerbate neurotoxicity in neonatal hyperbilirubinemia in mice[J]. Sci Transl Med, 2020, 12(530): eaax1337. doi:10.1126/scitranslmed.aax1337
[6] Shi HS, Lai K, Yin XL, et al. Ca2+-dependent recruitment of voltage-gated sodium channels underlies bilirubin-induced overexcitation and neurotoxicity[J]. Cell Death Dis, 2019, 10(10): 774. doi:10.1038/s41419-019-1979-1
[7] Gong LN, Liu HW, Lai K, et al. Selective vulnerability of GABAergic inhibitory interneurons to bilirubin neurotoxicity in the neonatal brain[J]. J Neurosci, 2024, 44(45): e0442242024. doi:10.1523/jneurosci.0442-24.2024
[8] 张玲,叶海波,时海波. 胆红素所致听觉系统神经损害的新机制[J]. 山东大学耳鼻喉眼学报, 2019, 33(3): 31-35. doi: 10.6040/j.issn.1673-3770.1.2018.044 ZHANG Ling, YE Haibo, SHI Haibo. A new mechanism of bilirubin-induced auditory nervous system injury[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(3): 31-35. doi: 10.6040/j.issn.1673-3770.1.2018.044
[9] Liu HW, Gong LN, Lai K, et al. Bilirubin gates the TRPM2 channel as a direct agonist to exacerbate ischemic brain damage[J]. Neuron, 2023, 111(10): 1609-1625.e6. doi:10.1016/j.neuron.2023.02.022
[10] Hansen TW, Mathiesen SB, Walaas SI. Bilirubin has widespread inhibitory effects on protein phosphorylation[J]. Pediatr Res, 1996, 39(6): 1072-1077. doi:10.1203/00006450-199606000-00023
[11] Mao L, Lu J, Yang Q, et al. Bilirubin Targeting WNK1 to Alleviate NLRP3-Mediated Neuroinflammation[J]. Adv Sci(Weinh), 2025. doi:10.1002/advs.202407349.
[12] Wu H, Suo GH, Li TC, et al. CaMKIV mediates spine growth deficiency of hippocampal neurons by regulation of EGR3/BDNF signal axis in congenital hypothyroidism[J]. Cell Death Discov, 2022, 8(1): 482. doi:10.1038/s41420-022-01270-4
[13] Tang QY, Chen SX, Wu H, et al. Congenital hypothyroidism impairs spine growth of dentate granule cells by downregulation of CaMKIV[J]. Cell Death Discov, 2021, 7(1): 143. doi:10.1038/s41420-021-00530-z.
[14] Li ZZ, Lu JY, Zeng G, et al. miR-129-5p inhibits liver cancer growth by targeting calcium calmodulin-dependent protein kinase IV(CAMK4)[J]. Cell Death Dis, 2019, 10: 789. doi:10.1038/s41419-019-1923-4
[15] Zhang XH, Griepentrog JE, Zou BB, et al. CaMKIV regulates mitochondrial dynamics during sepsis[J]. Cell Calcium, 2020, 92: 102286. doi:10.1016/j.ceca.2020.102286
[16] Saaciak K, Koszaka A,(·overZ)mudzka E, et al. The calcium/calmodulin-dependent kinases II and IV as therapeutic targets in neurodegenerative and neuropsychiatric disorders[J]. Int J Mol Sci, 2021, 22(9): 4307. doi:10.3390/ijms22094307
[17] Yin Y, Gao D, Wang Y, et al. Tau accumulation induces synaptic impairment and memory deficit by calcineurin-mediated inactivation of nuclear CaMKIV/CREB signaling[J]. Proc Natl Acad Sci U S A, 2016, 113(26): E3773-E3781. doi: 10.1073/pnas.1604519113
[18] Park D, Na M, Kim JA, et al. Activation of CaMKIV by soluble amyloid-β1-42 impedes trafficking of axonal vesicles and impairs activity-dependent synaptogenesis[J]. Sci Signal, 2017, 10(487): eaam8661. doi:10.1126/scisignal.aam8661
[19] Brito MA, Rosa AI, Falcão AS, et al. Unconjugated bilirubin differentially affects the redox status of neuronal and astroglial cells[J]. Neurobiol Dis, 2008, 29(1): 30-40. doi:10.1016/j.nbd.2007.07.023
[20] Rodrigues CMP, Solá S, Brito MA, et al. Bilirubin directly disrupts membrane lipid polarity and fluidity, protein order, and redox status in rat mitochondria[J]. J Hepatol, 2002, 36(3): 335-341. doi:10.1016/s0168-8278(01)00279-3
[21] Bianco A, Dvorák A, Capková N, et al. The extent of intracellular accumulation of bilirubin determines its anti- or pro-oxidant effect[J]. Int J Mol Sci, 2020, 21(21): 8101. doi:10.3390/ijms21218101
[22] Vasavda C, Kothari R, Malla AP, et al. Bilirubin links heme metabolism to neuroprotection by scavenging superoxide[J]. Cell Chem Biol, 2019, 26(10): 1450-1460.e7. doi:10.1016/j.chembiol.2019.07.006
[23] Meixiong J, Vasavda C, Green D, et al. Identification of a bilirubin receptor that may mediate a component of cholestatic itch[J]. eLife, 2019, 8: e44116. doi:10.7554/elife.44116
[24] Gordon DM, Hong SH, Kipp ZA, et al. Identification of binding regions of bilirubin in the ligand-binding pocket of the peroxisome proliferator-activated receptor-A(PPARalpha)[J]. Molecules, 2021, 26(10): 2975. doi:10.3390/molecules26102975
[25] Koga T, Otomo K, Mizui M, et al. Calcium/calmodulin-dependent kinase IV facilitates the recruitment of interleukin-17-producing cells to target organs through the CCR6/CCL20 axis in Th17 cell-driven inflammatory diseases[J]. Arthritis Rheumatol, 2016, 68(8): 1981-1988. doi:10.1002/art.39665
[26] Koga T, Sato T, Furukawa K, et al. Promotion of calcium/calmodulin-dependent protein kinase 4 by GLUT1-dependent glycolysis in systemic lupus erythematosus[J]. Arthritis Rheumatol, 2019, 71(5): 766-772. doi:10.1002/art.40785
[27] Pezhouman A, Singh N, Song Z, et al. Molecular basis of hypokalemia-induced ventricular fibrillation[J]. Circulation, 2015, 132(16): 1528-1537. doi:10.1161/CIRCULATIONAHA.115.016217
[28] Santulli G, Cipolletta E, Sorriento D, et al. CaMK4 gene deletion induces hypertension[J]. J Am Heart Assoc, 2012, 1(4): e001081. doi: 10.1161/JAHA.112.001081
[29] Wong MH, Samal AB, Lee MK, et al. The KN-93 molecule inhibits calcium/calmodulin-dependent protein kinase II(CaMKII)activity by binding to Ca2+/CaM[J]. J Mol Biol, 2019, 431(7): 1440-1459. doi:10.1016/j.jmb.2019.02.001
[30] Lin ZD, Xu GY, Lu X, et al. Piezo1 exacerbates inflammation-induced cartilaginous endplate degeneration by activating mitochondrial fission via the Ca2+/CaMKII/Drp1 axis[J]. Aging Cell, 2024: e14440. doi:10.1111/acel.14440
[31] Lu S, Liao ZD, Lu XY, et al. Hyperglycemia acutely increases cytosolic reactive oxygen species via O-linked GlcNAcylation and CaMKII activation in mouse ventricular myocytes[J]. Circ Res, 2020, 126(10): 80-96. doi:10.1161/CIRCRESAHA.119.316288
[32] Zhao YL, James NA, Beshay AR, et al. Adult zebrafish ventricular electrical gradients as tissue mechanisms of ECG patterns under baseline vs. oxidative stress[J]. Cardiovasc Res, 2021, 117(8): 1891-1907. doi:10.1093/cvr/cvaa238
[33] Ni YJ, Deng J, Bai HY, et al. CaMKII inhibitor KN-93 impaired angiogenesis and aggravated cardiac remodelling and heart failure via inhibiting NOX2/mtROS/p-VEGFR2 and STAT3 pathways[J]. J Cell Mol Med, 2022, 26(2): 312-325. doi:10.1111/jcmm.17081
[34] Dai XM, Meng JS, Deng SK, et al. Targeting CAMKII to reprogram tumor-associated macrophages and inhibit tumor cells for cancer immunotherapy with an injectable hybrid peptide hydrogel[J]. Theranostics, 2020, 10(7): 3049-3063. doi:10.7150/thno.42385
[35] Fu LY, Zhang Y, Farokhzad RA, et al. ‘Passive’ nanoparticles for organ-selective systemic delivery: design, mechanism and perspective[J]. Chem Soc Rev, 2023, 52(21): 7579-7601. doi:10.1039/d2cs00998f
[36] Mitchell MJ, Billingsley MM, Haley RM, et al. Engineering precision nanoparticles for drug delivery[J]. Nat Rev Drug Discov, 2021, 20(2): 101-124. doi:10.1038/s41573-020-0090-8
[1] WU Cuiping, ZHU Yidan, LI Chunyan, YIN Shankai. Effect of bilirubin on the viability and proliferation of neural stem cells [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(4): 1-6.
[2] ZHOU Yingdong, ZHANG Mengxian, WANG Qingling, KANG Haoran, GUO Xiangdong. Progress of research of oxidative stress in the pathogenesis of presbycusis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(1): 72-78.
[3] SUO Anqi, YANG Xinxin. Research progress on the relationship between mitochondrial autophagy and squamous cell carcinoma of the head and neck [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(3): 111-117.
[4] LI Mengting, HE Shuxi, WANG Hua. Research progress of inflammatory factors in Keratoconus [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(2): 151-158.
[5] SU Jie, YANG Fuyu, LI Meng, CHEN Huiru, JIANG Lisheng, WANG Lixiang. GLP-1 protected the diabetic retinopathy through induction of autophagy in rats [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 30-34.
[6] ZHANG Yi, WANG Wenjun,YANG Anhuai. Research progress of SIRT1 activation by resveratrol in ocular diseases [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 151-156.
[7] FU Yihao, XU Yixuan,YAN Hong, ZHANG Jie. Recent research advances in the role of glutaredoxin in oculopathy [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(3): 125-130.
[8] SONG Fan, HUANG Weijun, XU Huajun, GUAN Jian, YI Hongliang. Relationship between carotid elasticity and oxidative stress in patients with obstructive sleep apnea syndrome [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(4): 99-104.
[9] Ling ZHANG,Haibo YE,Haibo SHI. A new mechanism of bilirubin-induced auditory nervous system injury [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(3): 31-35.
[10] ZHANG Zhuan, LIU Tao, BAI Zhili, ZHOU Changming. Evolution of oxidative stress in the pathogenesis and treatment of noise-induced hearing loss. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(5): 101-103.
[11] . Effects of rosiglitazone on oxidative stress and cognitive function in mice exposed to intermittent hypoxia. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(1): 45-49.
[12] LI Yanzhong. Obesity and obstructive sleep apnea. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2016, 30(5): 1-4.
[13] LI Langen, WEI Wei, ZHANG Yufeng, Geriletu, YANG Jia, ZHANG Yanmei. The experiment of SIRT1 on against oxidative stress to retinal pigmented epithelium cells [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2015, 29(6): 56-59.
[14] LIU Hong, WANG Shuai, WANG Hai-bo. Review on mtDNACD4977 and presbyacusis [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2014, 28(4): 95-99.
[15] BI Hong-sheng,LI Shu-jie,CUI Yan,WANG Hui . Effect of tea polyphenols in preventing diabetic cataracts induced by streptozotocin in rats and its mechanism [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(1): 1-05 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!