Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2023, Vol. 37 ›› Issue (2): 151-158.doi: 10.6040/j.issn.1673-3770.0.2021.536
• 综述 • Previous Articles
LI Mengting, HE Shuxi, WANG Hua
CLC Number:
[1] Shetty R, D'Souza S, Khamar P, et al. Biochemical markers and alterations in keratoconus[J]. Asia Pac J Ophthalmol(hpila), 2020, 9(6): 533-540. doi:10.1097/apo.0000000000000332 [2] Saghizadeh M, Chwa M, Aoki A, et al. Altered expression of growth factors and cytokines in keratoconus, bullous keratopathy and diabetic human corneas[J]. Exp Eye Res, 2001, 73(2): 179-189. doi:10.1006/exer.2001.1028 [3] Lema I, Durán JA, Ruiz C, et al. Inflammatory response to contact lenses in patients with keratoconus compared with myopic subjects[J]. Cornea, 2008, 27(7): 758-763. doi:10.1097/ICO.0b013e31816a3591 [4] Balasubramanian SA, Mohan S, Pye DC, et al. Proteases, proteolysis and inflammatory molecules in the tears of people with keratoconus[J]. Acta Ophthalmol, 2012, 90(4): e303-e309. doi:10.1111/j.1755-3768.2011.02369.x [5] Kolozsvári BL, Berta A, Petrovski G, et al. Alterations of tear mediators in patients with keratoconus after corneal crosslinking associate with corneal changes[J]. PLoS One, 2013, 8(10): e76333. doi:10.1371/journal.pone.0076333 [6] Yabuta C, Yano F, Fujii A, et al. Galectin-3 enhances epithelial cell adhesion and wound healing in rat cornea[J]. Ophthalmic Res, 2014, 51(2): 96-103. doi:10.1159/000355846 [7] McMonnies CW. Inflammation and keratoconus[J]. Optom Vis Sci, 2015, 92(2): e35-e41. doi:10.1097/opx.0000000000000455 [8] Wilson SE, He YG, Weng J, et al. Epithelial injury induces keratocyte apoptosis: hypothesized role for the interleukin-1 system in the modulation of corneal tissue organization and wound healing[J]. Exp Eye Res, 1996, 62(4): 325-327. doi:10.1006/exer.1996.0038 [9] Balasubramanian SA, Pye DC, Willcox MD. Are proteinases the reason for keratoconus? [J]. Curr Eye Res, 2010, 35(3): 185-191. doi:10.3109/02713680903477824 [10] Abu-Amero KK, Azad TA, Kalantan H, et al. Mitochondrial sequence changes in keratoconus patients[J]. Invest Ophthalmol Vis Sci, 2014, 55(3): 1706-1710. doi:10.1167/iovs.14-13938 [11] Nabil KM, Elhady GM, Morsy H. The association between interleukin 1 beta promoter polymorphisms and keratoconus incidence and severity in an Egyptian population[J]. Clin Ophthalmol, 2019, 13: 2217-2223. doi:10.2147/OPTH.S220723 [12] Balasubramanian SA, Pye DC, Willcox MDP. Effects of eye rubbing on the levels of protease, protease activity and cytokines in tears: relevance in keratoconus[J]. Clin Exp Optom, 2013, 96(2): 214-218. doi:10.1111/cxo.12038 [13] Ebihara N, Matsuda A, Nakamura S, et al. Role of the IL-6 classic- and trans-signaling pathways in corneal sterile inflammation and wound healing[J]. Invest Ophthalmol Vis Sci, 2011, 52(12): 8549-8557. doi:10.1167/iovs.11-7956 [14] Jones SA, Horiuchi S, Topley N, et al. The soluble interleukin 6 receptor: mechanisms of production and implications in disease[J]. FASEB J, 2001, 15(1): 43-58. doi:10.1096/fj.99-1003rev [15] Huovila APJ, Turner AJ, Pelto-Huikko M, et al. Shedding light on ADAM metalloproteinases[J]. Trends Biochem Sci, 2005, 30(7): 413-422. doi:10.1016/j.tibs.2005.05.006 [16] Izumi-Nagai K, Nagai N, Ozawa Y, et al. Interleukin-6 receptor-mediated activation of signal transducer and activator of transcription-3(STAT3)promotes choroidal neovascularization[J]. Am J Pathol, 2007, 170(6): 2149-2158. doi:10.2353/ajpath.2007.061018 [17] Abraham LJ, Kroeger KM. Impact of the-308 TNF promoter polymorphism on the transcriptional regulation of the TNF gene: relevance to disease[J]. J Leukoc Biol, 1999, 66(4): 562-566. doi:10.1002/jlb.66.4.562 [18] Arbab M, Tahir S, Niazi MK, et al. TNF-α genetic predisposition and higher expression of inflammatory pathway components in keratoconus[J]. Invest Ophthalmol Vis Sci, 2017, 58(9): 3481-3487. doi:10.1167/iovs.16-21400 [19] Beyaert R, Fiers W. Molecular mechanisms of tumor necrosis factor-induced cytotoxicity. What we do understand and what we do not[J]. FEBS Lett, 1994, 340(1/2): 9-16. doi:10.1016/0014-5793(94)80163-0 [20] Shetty R, Ghosh A, Lim RR, et al. Elevated expression of matrix metalloproteinase-9 and inflammatory cytokines in keratoconus patients is inhibited by cyclosporine A[J]. Invest Ophthalmol Vis Sci, 2015, 56(2): 738-750. doi:10.1167/iovs.14-14831 [21] Amento EP, Beck LS. TGF-beta and wound healing[J]. Ciba Found Symp, 1991, 157:115-123. doi:10.1002/9780470514061.ch8 [22] Saika S. TGF-β pathobiology in the eye[J]. Laboratory investigation, 2006, 86(2):106-115. doi: 10.1038/labinvest.3700375 [23] Sanford LP, Ormsby I, Gittenberger-de Groot AC, et al. TGFbeta2 knockout mice have multiple developmental defects that are non-overlapping with other TGFbeta knockout phenotypes[J]. Development, 1997, 124(13): 2659-2670. doi:10.1242/dev.124.13.2659 [24] Priyadarsini S, McKay TB, Sarker-Nag A, et al. Keratoconus in vitro and the key players of the TGF-β pathway[J]. Mol Vis, 2015, 21: 577-588 [25] Engler C, Chakravarti S, Doyle J, et al. Transforming growth factor-β signaling pathway activation in Keratoconus[J]. Am J Ophthalmol, 2011, 151(5): 752-759.e2. doi:10.1016/j.ajo.2010.11.008 [26] Al Qattan A, Lessard L, Philip A, et al. Abstract 84: nAG(a salamander-derived protein)as an inhibitor of TGF-β signaling and fibrotic responses. PSRC 2018 Abstract supplement, 2018: 67-68. doi: 10.1097/01.GOX.0000533949.54354.9b [27] Lyon D', McKay TB, Sarkar-Nag A, et al. Human keratoconus cell contractility is mediated by transforming growth factor-beta isoforms[J]. J Funct Biomater, 2015, 6(2): 422-438. doi:10.3390/jfb6020422 [28] Yang YN, Wang F, Zhou W, et al. TNF-α stimulates MMP-2 and MMP-9 activities in human corneal epithelial cells via the activation of FAK/ERK signaling[J]. Ophthalmic Res, 2012, 48(4): 165-170. doi:10.1159/000338819 [29] Aren A, Gökçe AH, Gökçe FS, et al. Roles of matrix metalloproteinases in the etiology of inguinal hernia[J]. Hernia, 2011, 15(6): 667-671. doi:10.1007/s10029-011-0846-5 [30] Nagase H, Woessner JF Jr. Matrix metalloproteinases[J]. J Biol Chem, 1999, 274(31): 21491-21494. doi:10.1074/jbc.274.31.21491 [31] Fini ME, Cook JR, Mohan R. Proteolytic mechanisms in corneal ulceration and repair[J]. Arch Dermatol Res, 1998, 290: S12-S23. doi:10.1007/pl00007449 [32] Du G, Liu C, Li X, et al. Induction of matrix metalloproteinase-1 by tumor necrosis factor-α is mediated by interleukin-6 in cultured fibroblasts of keratoconus[J]. Exp Biol(Med Maywood), 2016, 241(18): 2033-2041. doi:10.1177/1535370216650940 [33] Librach CL, Feigenbaum SL, Bass KE, et al. Interleukin-1 beta regulates human cytotrophoblast metalloproteinase activity and invasion in vitro[J]. J Biol Chem, 1994, 269(25): 17125-17131. doi:10.1016/S0021-9258(17)32529-2 [34] Vettraino IM, Roby J, Tolley T, et al. Collagenase-I, stromelysin-I, and matrilysin are expressed within the placenta during multiple stages of human pregnancy[J]. Placenta, 1996, 17(8): 557-563. doi:10.1016/s0143-4004(96)80072-5 [35] Li DQ, Lokeshwar BL, Solomon A, et al. Regulation of MMP-9 production by human corneal epithelial cells[J]. Exp Eye Res, 2001, 73(4): 449-459. doi:10.1006/exer.2001.1054 [36] Golub LM, Ramamurthy NS, McNamara TF, et al. Tetracyclines inhibit connective tissue breakdown: new therapeutic implications for an old family of drugs[J]. Crit Rev Oral Biol Med, 1991, 2(3): 297-321. doi:10.1177/10454411910020030201 [37] Peng SX, VonBargen EC, Bornes DM, et al. Permeability of articular cartilage to matrix metalloprotease inhibitors[J]. Pharm Res, 1998, 15(9): 1414-1418. doi:10.1023/a: 1011905806123 [38] Cox SW, Eley BM, Kiili M, et al. Collagen degradation by interleukin-1beta-stimulated gingival fibroblasts is accompanied by release and activation of multiple matrix metalloproteinases and cysteine proteinases[J]. Oral Dis, 2006, 12(1): 34-40. doi:10.1111/j.1601-0825.2005.01153.x [39] di Martino E, Ali M, Inglehearn CF. Matrix metalloproteinases in keratoconus-Too much of a good thing? [J]. Exp Eye Res, 2019, 182: 137-143. doi:10.1016/j.exer.2019.03.016 [40] Smith VA, Easty DL. Matrix metalloproteinase 2: involvement in keratoconus[J]. Eur J Ophthalmol, 2000, 10(3): 215-226. doi:10.1177/112067210001000305 [41] Kenney MC, Chwa M, Opbroek AJ, et al. Increased gelatinolytic activity in keratoconus keratocyte cultures. A correlation to an altered matrix metalloproteinase-2/tissue inhibitor of metalloproteinase ratio[J]. Cornea, 1994, 13(2): 114-124. doi:10.1097/00003226-199403000-00003 [42] Stuart KA, Riordan SM, Lidder S, et al. Hepatocyte growth factor/scatter factor-induced intracellular signalling[J]. Int J Exp Pathol, 2000, 81(1): 17-30. doi:10.1046/j.1365-2613.2000.00138.x [43] Organ SL, Tsao MS. An overview of the c-MET signaling pathway[J]. Ther Adv Med Oncol, 2011, 3(1): S7-S19. doi:10.1177/1758834011422556 [44] Wilson SE, Walker JW, Chwang EL, et al. Hepatocyte growth factor, keratinocyte growth factor, their receptors, fibroblast growth factor receptor-2, and the cells of the cornea[J]. Invest Ophthalmol Vis Sci, 1993, 34(8): 2544-2561. doi: 10.1007/BF00919654 [45] Wilson SE, Liang Q, Kim WJ. Lacrimal gland HGF, KGF, and EGF mRNA levels increase after corneal epithelial wounding[J]. Invest Ophthalmol Vis Sci, 1999, 40(10): 2185-2190. doi: doi:10.1097/00004397-199903940-00012 [46] Burdon KP, Macgregor S, Bykhovskaya Y, et al. Association of polymorphisms in the hepatocyte growth factor gene promoter with keratoconus[J]. Invest Ophthalmol Vis Sci, 2011, 52(11): 8514-8519. doi:10.1167/iovs.11-8261 [47] Liu Y, Michalopoulos GK, Zarnegar R. Structural and functional characterization of the mouse hepatocyte growth factor gene promoter[J]. J Biol Chem, 1994, 269(6): 4152-4160. doi: 10.1016/0092-8674(94)90120-1 [48] De Benedetto A, Agnihothri R, McGirt LY, et al. Atopic dermatitis: a disease caused by innate immune defects? [J]. J Invest Dermatol, 2009, 129(1): 14-30. doi:10.1038/jid.2008.259 [49] Kallinikos P, Efron N. On the etiology of keratocyte loss during contact lens wear[J]. Invest Ophthalmol Vis Sci, 2004, 45(9): 3011-3020. doi:10.1167/iovs.04-0129 [50] Shneor E, Millodot M, Blumberg S, et al. Characteristics of 244 patients with keratoconus seen in an optometric contact lens practice[J]. Clin Exp Optom, 2013, 96(2): 219-224. doi:10.1111/cxo.12005 [51] Winkler M, Shoa G, Xie Y, et al. Three-dimensional distribution of transverse collagen fibers in the anterior human corneal stroma[J]. Invest Ophthalmol Vis Sci, 2013, 54(12): 7293-7301. doi:10.1167/iovs.13-13150 [52] Mackiewicz Z, Määtä M, Stenman M, et al. Collagenolytic proteinases in keratoconus[J]. Cornea, 2006, 25(5): 603-610. doi:10.1097/01.ico.0000208820.32614.00. [53] Fodor M, Kolozsvári BL, Petrovski G, et al. Effect of contact lens wear on the release of tear mediators in keratoconus[J]. Eye Contact Lens, 2013, 39(2): 147-152. doi:10.1097/ICL.0b013e318273b35f [54] Shoham A, Hadziahmetovic M, Dunaief JL, et al. Oxidative stress in diseases of the human cornea[J]. Free Radic Biol Med, 2008, 45(8): 1047-1055. doi:10.1016/j.freeradbiomed.2008.07.021 [55] Kenney MC, Brown DJ. The cascade hypothesis of keratoconus[J]. Contact Lens Anterior Eye, 2003, 26(3): 139-146. doi:10.1016/S1367-0484(03)00022-5 [56] Wojcik K A, Kaminska A, Blasiak J, et al. Oxidative stress in the pathogenesis of keratoconus and fuchs endothelial corneal dystrophy[J]. Int J Mol Sci, 2013, 14(9): 19294-19308. doi:10.3390/ijms140919294 [57] Gondhowiardjo TD, van Haeringen NJ, Völker-Dieben HJ, et al. Analysis of corneal aldehyde dehydrogenase patterns in pathologic corneas[J]. Cornea, 1993, 12(2): 146-154. doi:10.1097/00003226-199303000-00010 [58] Sharma N, Rao K, Maharana PK, et al. Ocular allergy and keratoconus[J]. Indian J Ophthalmol, 2013, 61(8): 407-409. doi:10.4103/0301-4738.116063 [59] Ahuja P, Dadachanji Z, Shetty R, et al. Relevance of IgE, allergy and eye rubbing in the pathogenesis and management of Keratoconus[J]. Indian J Ophthalmol, 2020, 68(10): 2067-2074. doi:10.4103/ijo.IJO_1191_19 [60] 夏艳云, 钟定娟, 王华, 等. 高能量加速型角膜胶原交联术对圆锥角膜眼表的影响[J]. 山东大学耳鼻喉眼学报, 2021, 35(6): 42-51. doi: 10.6040/j.issn.1673-3770.0.2021.432 XIA Yanyun, ZHONG Dingjuan, WANG Hua, et al. Effect of high-energy accelerated corneal collagen cross-linking on the ocular surface of keratoconus[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(6): 42-51. doi: 10.6040/j.issn.1673-3770.0.2021.432 |
[1] | SU Jie, YANG Fuyu, LI Meng, CHEN Huiru, JIANG Lisheng, WANG Lixiang. GLP-1 protected the diabetic retinopathy through induction of autophagy in rats [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 30-34. |
[2] | WANG Chuanyu, MU Guoying. Keratoconus combined with Kayser-Fleischer ring: a case report and literature review [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 58-62. |
[3] | LIANG Xu,SHI Li. Research progress in biologic targeted drug therapy for chronic sinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 30-35. |
[4] | NI Jingzi, WAN Wenjin,CHENG Lei. Research progress on health-related quality of life in allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 110-115. |
[5] | LIN Yihang,LI Youjin. Research progress on gut microbiome in children with allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 116-122. |
[6] | LIU Zhen,SONG Xicheng. Mechanisms and research progress of pyroptosis in allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 123-129. |
[7] | LIU Yitong, ZHOU Suizi,QIU Qianhui. Research progress on NLRP3 inflammasome in chronic rhinosinusitis and allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 142-146. |
[8] | LIANG Xu, JIN Peng, ZHAO Li, YU Kena, ZI Xiaoxue, YUAN Guangmei, ZANG Yirang, ZHANG Qinqin, ZHANG Hailing, SHI Li, ZHANG Hongping. Role of nasal nitric oxide in diagnosis of chronic sinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 181-188. |
[9] | SUN Na, HUANG Yu, ZHANG Ruxin, ZHANG Xueyan, NIU Yue, DUAN Yusen, KAN Haidong. Effects of ozone on nuclear protein expression of NF-κB p65 in nasal mucosa and inflammatory factors in a rat model of allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 237-244. |
[10] | GONG Xiaoyang, CHENG Lei. Analysis of proportion of outpatients with allergic rhinitis during the coronavirus infectious disease 2019 pandemic [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 245-255. |
[11] | ZHANG Yaqi, LIU Huimin, CAO Linman, WANG Ziyu, LIN Xu, LI Yanping, XUE Gang, WU Jingfang. Expression and significance of the MAPK,PI3K-AKT,NF-κB pathways of allergic rhinitis in mice [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 254-259. |
[12] | LU Weili, JIANG Tao, LI Xianhua. Analysis of sIgE in polysensitized children with allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 260-265. |
[13] | HUANG Kaiyue, LI Xueqing, HAN Gouxin, ZHANG Qinxiu. Meta-analysis of acupoint catgut embedding in the treatment of allergic rhinitis based on the theory of “lung and spleen” [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 266-274. |
[14] | ZHU Zhengru, ZHANG Xiaobing. Meta-analysis of the curative effect of traditional Chinese medicine decoction combined with conventional western medicine on allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 281-289. |
[15] | ZHANG Yi, WANG Wenjun,YANG Anhuai. Research progress of SIRT1 activation by resveratrol in ocular diseases [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 151-156. |
|