Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2020, Vol. 34 ›› Issue (1): 99-104.doi: 10.6040/j.issn.1673-3770.0.2019.370
Previous Articles Next Articles
BIAN Xiaomin1, HAN Guanghong2,YU Dan1
CLC Number:
[1] 吴静, 刘业海. 头颈部鳞状细胞癌的靶向治疗研究进展[J]. 山东大学耳鼻喉眼学报, 2018, 32(5): 97-102. doi:10.6040/j.issn.1673-3770.0. 2018.058. WU Jing, LIU Yehai. Targeted therapy for head and neck squamous cell carcinoma[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2018, 32(5): 97-102. doi:10.6040/j.issn.1673-3770.0. 2018.058. [2] Jabalee J, Towle R, Garnis C. The role of extracellular vesicles in cancer: cargo, function, and therapeutic implications[J]. Cells, 2018, 7(8): 93. doi:10.3390/cells7080093. [3] Gu XY, Erb U, Büchler MW, et al. Improved vaccine efficacy of tumor exosome compared to tumor lysate loaded dendritic cells in mice[J]. Int J Cancer, 2015, 136(4): E74-E84. doi:10.1002/ijc. 29100. [4] Ludwig S, Sharma P, Theodoraki MN, et al. Molecular and functional profiles of exosomes from HPV(+)and HPV(-)head and neck cancer cell lines[J]. Front Oncol, 2018, 8: 445. doi:10.3389/fonc. 2018.00445. [5] Theodoraki MN, Yerneni SS, Hoffmann TK, et al. Clinical significance of PD-L1+ exosomes in plasma of head and neck cancer patients[J]. Clin Cancer Res, 2018, 24(4): 896-905. doi:10.1158/1078-0432. CCR-17-2664. [6] Theodoraki MN, Hoffmann TK, Jackson EK, et al. Exosomes in HNSCC plasma as surrogate markers of tumour progression and immune competence[J]. Clin Exp Immunol, 2018, 194(1): 67-78. doi:10.1111/cei. 13157. [7] Maybruck BT, Pfannenstiel LW, Diaz-Montero M, et al. Tumor-derived exosomes induce CD8+ T cell suppressors[J]. J Immunother Cancer, 2017, 5(1): 65. doi:10.1186/s40425-017-0269-7. [8] Xie CQ, Ji N, Tang ZG, et al. The role of extracellular vesicles from different origin in the microenvironment of head and neck cancers[J]. Mol Cancer, 2019, 18(1): 83. doi:10.1186/s12943-019-0985-3. [9] Huang Q, Yang JC, Zheng J, et al. Characterization of selective exosomal microRNA expression profile derived from laryngeal squamous cell carcinoma detected by next generation sequencing[J]. Oncol Rep, 2018, 40(5): 2584-2594. doi:10.3892/or. 2018.6672. [10] Wang XN, Qin X, Yan M, et al. Loss of exosomal miR-3188 in cancer-associated fibroblasts contributes to HNC progression[J]. J Exp Clin Cancer Res, 2019, 38(1): 151. doi:10.1186/s13046-019-1144-9. [11] Cheng SY, Li Z, He JJ, et al. Epstein-Barr virus noncoding RNAs from the extracellular vesicles of nasopharyngeal carcinoma(NPC)cells promote angiogenesis via TLR3/RIG-I-mediated VCAM-1 expression[J]. Biochim Biophys Acta Mol Basis Dis, 2019, 1865(6): 1201-1213. doi:10.1016/j.bbadis. 2019.01.015. [12] Bao LL, You B, Shi S, et al. Metastasis-associated miR-23a from nasopharyngeal carcinoma-derived exosomes mediates angiogenesis by repressing a novel target gene TSGA10[J]. Oncogene, 2018, 37(21): 2873-2889. doi:10.1038/s41388-018-0183-6. [13] Shan Y, You B, Shi S, et al. Hypoxia-induced matrix metalloproteinase-13 expression in exosomes from nasopharyngeal carcinoma enhances metastases[J]. Cell Death Dis, 2018, 9(3): 382. doi:10.1038/s41419-018-0425-0. [14] 王爽, 孔祥玉, 杜利清. 外泌体与肿瘤化疗耐药的研究进展[J]. 肿瘤, 2017, 37(2): 184-187. doi:10.3781/j.issn.1000-7431. 2017.55.719. WANG Shuang, KONG Xiangyu, DU Liqing. Progress in research on exosomes in tumor chemotherapy resistance[J]. Tumor, 2017, 37(2): 184-187. doi:10.3781/j.issn.1000-7431. 2017.55.719. [15] 张如月, 周玉冰, 杨哲, 等. 外泌体介导的肿瘤化疗耐药研究进展[J]. 药学学报, 2019, 54(4): 594-600. doi:10.16438/j.0513-4870. 2018-1025. ZHANG Ruyue, ZHOU Yubing, YANG Zhe, et al. Advances in understanding exosomes-mediated tumor chemoresistance[J]. Acta Pharmaceutica Sinica, 2019, 54(4): 594-600. doi:10.16438/j.0513-4870. 2018-1025. [16] Steinbichler TB, Dudás J, Skvortsov S, et al. Therapy resistance mediated by exosomes[J]. Mol Cancer, 2019, 18(1): 58. doi:10.1186/s12943-019-0970-x. [17] 陈曦, 乔明哲. 免疫检查点抑制剂在复发或转移性头颈鳞癌的治疗进展[J]. 山东大学耳鼻喉眼学报, 2019, 33(3): 42-48.doi:10.6040/j.issn.1673-3770. 1. 2019.001. CHEN Xi, QIAO Mingzhe. Progress of immune checkpoint inhibitors in the treatment of recurrent or metastatic head and neck squamous cell carcinoma[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2019, 33(3): 42-48. doi:10.6040/j.issn.1673-3770.1. 2019.001. [18] Qin X, Guo HY, Wang XN, et al. Exosomal miR-196a derived from cancer-associated fibroblasts confers cisplatin resistance in head and neck cancer through targeting CDKN1B and ING5[J]. Genome Biol, 2019, 20(1): 12. doi:10.1186/s13059-018-1604-0. [19] Liu T, Chen G, Sun DW, et al. Exosomes containing miR-21 transfer the characteristic of cisplatin resistance by targeting PTEN and PDCD4 in oral squamous cell carcinoma[J]. Acta Biochim Biophys Sin(Shanghai), 2017, 49(9): 808-816. doi:10.1093/abbs/gmx078. [20] 严羽, 朱江. 早期喉癌及喉癌前病变诊断的研究进展[J]. 山东大学耳鼻喉眼学报, 2015, 29(4): 80-85. doi:10.6040/j. issn.1673-770.0. 2015.007. YAN Yu, ZHU Jiang. Advances in the diagnosis of early laryngeal carcinoma and precancerous laryngeal lesions[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2015, 29(4): 80-85. doi:10.6040/j. issn.1673-770.0. 2015.007. [21] Jiang N, Pan JC, Fang S, et al. Liquid biopsy: Circulating exosomal long noncoding RNAs in cancer[J]. Clin Chim Acta, 2019, 495: 331-337. doi:10.1016/j.cca. 2019.04.082. [22] Wang JT, Zhou YD, Lu JG, et al. Combined detection of serum exosomal miR-21 and HOTAIR as diagnostic and prognostic biomarkers for laryngeal squamous cell carcinoma[J]. Med Oncol, 2014, 31(9): 148. doi:10.1007/s12032-014-0148-8. [23] Ding H, Cai YJ, Gao LZ, et al. Exosome-like nanozyme vesicles for H2O2-responsive catalytic photoacoustic imaging of xenograft nasopharyngeal carcinoma[J]. Nano Lett, 2019, 19(1): 203-209. doi:10.1021/acs.nanolett. 8b03709. [24] Nair S, Tang KD, Kenny L, et al. Salivary exosomes as potential biomarkers in cancer[J]. Oral Oncol, 2018, 84: 31-40. doi:10.1016/j.oraloncology. 2018.07.001. [25] Langevin S, Kuhnell D, Parry T, et al. Comprehensive microRNA-sequencing of exosomes derived from head and neck carcinoma cells in vitro reveals common secretion profiles and potential utility as salivary biomarkers[J]. Oncotarget, 2017, 8(47): 82459-82474. doi:10.18632/oncotarget. 19614. [26] Kannan A, Hertweck KL, Philley JV, et al. Genetic mutation and exosome signature of human papilloma virus associated oropharyngeal cancer[J]. Sci Rep, 2017, 7: 46102. doi:10.1038/srep46102. [27] Chen XH, Fu EH, Lou HH, et al. IL-6 induced M1 type macrophage polarization increases radiosensitivity in HPV positive head and neck cancer[J]. Cancer Lett, 2019, 456: 69-79. doi:10.1016/j.canlet. 2019.04.032. [28] Peacock B, Rigby A, Bradford J, et al. Extracellular vesicle microRNA cargo is correlated with HPV status in oropharyngeal carcinoma[J]. J Oral Pathol Med, 2018, 47(10): 954-963. doi:10.1111/jop. 12781. [29] Tomasetti M, Re M, Monaco F, et al. MiR-126 in intestinal-type sinonasal adenocarcinomas: exosomal transfer of MiR-126 promotes anti-tumour responses[J]. BMC Cancer, 2018, 18(1): 896. doi:10.1186/s12885-018-4801-z. [30] Ren K. Exosomes in perspective: a potential surrogate for stem cell therapy[J]. Odontology, 2019, 107(3): 271-284. doi:10.1007/s10266-018-0395-9. [31] Li L, Lu S, Liang XH, et al. ΓδTDEs: an efficient delivery system for miR-138 with anti-tumoral and immunostimulatory roles on oral squamous cell carcinoma[J]. Mol Ther Nucleic Acids, 2019, 14: 101-113. doi:10.1016/j.omtn. 2018.11.009. [32] Lu J, Liu QH, Wang F, et al. Exosomal miR-9 inhibits angiogenesis by targeting MDK and regulating PDK/AKT pathway in nasopharyngeal carcinoma[J]. J Exp Clin Cancer Res, 2018, 37(1): 147. doi:10.1186/s13046-018-0814-3. [33] Di Bonito P, Accardi L, Galati L, et al. Anti-cancer vaccine for HPV-associated neoplasms: focus on a therapeutic HPV vaccine based on a novel tumor antigen delivery method using endogenously engineered exosomes[J]. Cancers(Basel), 2019, 11(2): E138. doi:10.3390/cancers11020138. [34] 罗轶, 阚丹, 周琦, 等. 外泌体miRNAs在鼻咽癌放射抵抗中的作用[J]. 中国耳鼻咽喉头颈外科, 2019, 26(5): 239-243. doi:10.16066/j.1672-7002. 2019.05.002. LUO Yi, KAN Dan, ZHOU QI, et al. Role of miRNAs from exosomes in the radioresistance of nasopharyngeal carcinoma[J]. Chinese Archives of Otolaryngology-Head and Neck Surgery, 2019, 26(5): 239-243. doi:10.16066/j.1672-7002. 2019.05.002. [35] Kobayashi E, Aga M, Kondo S, et al. C-terminal farnesylation of UCH-L1 plays a role in transport of Epstein-Barr virus primary oncoprotein LMP1 to exosomes[J]. mSphere, 2018, 3(1): e00030-18. doi:10.1128/msphere. 00030-18. [36] Zhou YJ, Xia LZ, Lin JG, et al. Exosomes in Nasopharyngeal Carcinoma[J]. J Cancer, 2018, 9(5): 767-777. doi:10.7150/jca. 22505. [37] Wang CH, Chen L, Huang YY, et al. Exosome-delivered TRPP2 siRNA inhibits the epithelial-mesenchymal transition of FaDu cells[J]. Oncol Lett, 2019, 17(2): 1953-1961. doi:10.3892/ol. 2018.9752. |
[1] | ZHANG YiyiOverview,XUE Gang, JIN ChuntingGuidance. Research progress of exosomes in thyroid cancers [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(2): 131-135. |
[2] | ZHANG Xuping, LIU XuexiaOverview,ZHANG HuaGuidance. Current progress of exosome research in allergic diseases [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(2): 136-140. |
[3] | ZHOU Juan, ZHENG Jiafa. Research progress of miRNA in head and neck cancers [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2015, 29(5): 79-82. |
|