Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2023, Vol. 37 ›› Issue (1): 105-109.doi: 10.6040/j.issn.1673-3770.0.2021.528

Previous Articles    

Effect of optical amplification on measurement of ganglion cell complex

ZHAO Hongxiao, ZHANG Han   

  1. Department of Ophthalmology, Shandong Provincial Hospital, Shandong University, Jinan 250021, Shandong, China
  • Published:2023-02-06

Abstract: Objective To observe the measurement of retinal ganglion cell complex(GCC)thickness in young myopia patients by optical amplification effect and its relationship with axial length(AL)and spherical equivalent(SE). Methods From September 2021 to November 2021, 102 young myopia patients(eyes)were selected, including 38 eyes in low myopia group(-0.5 D~-3.0 D), 39 eyes in moderate myopia group(-3.25 D~-6.0 D)and 25 eyes in high myopia group(>-6.0 D). The thickness parameters of GCC were measured by optical coherence tomography(OCT), and the optical amplification effect was corrected for the measurement results. The relationship between GCC thickness and AL was compared by one-way analysis of varianceand Pearson correlation analysis. Results There were significant differences in average GCC thickness, superior GCC thickness and inferior GCC thickness among the three groups, whether corrected or not(all P<0.05). Before and after GCC thickness correction, there was significant difference in middle and high myopia group(all P<0.001), but there was no significant difference in low myopia group(all P>0.05). Before correction, the average GCC thickness, superior GCC thickness and inferior GCC thickness were negatively correlated with AL and positively correlated with SE(all P<0.05). FLV was negatively correlated with AL(P<0.05), GLV was negatively correlated with SE(all P<0.001). After correction, the average GCC thickness, superior GCC thickness and inferior GCC thickness were positively correlated with AL and negatively correlated with SE(P<0.001). Conclusion The effect of optical amplification should be considered in the measurement of GCC thickness in young patients with moderate and high myopia.

Key words: Optical coherence tomography, Myopia, Retinal ganglion cell complex, Optical amplification effect, Ocular axis length

CLC Number: 

  • R778
[1] Baird PN, Saw SM, Lanca C, et al. Myopia[J]. Nat Rev Dis Primers, 2020, 6(1): 99. doi:10.1038/s41572-020-00231-4
[2] Holden BA, Fricke TR, Wilson DA, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050[J]. Ophthalmology, 2016, 123(5): 1036-1042. doi:10.1016/j.ophtha.2016.01.006
[3] Jonas JB, Aung T, Bourne RR, et al. Glaucoma[J]. Lancet, 2017, 390(10108): 2183-2193. doi:10.1016/S0140-6736(17)31469-1
[4] 徐利辉, 秦萍, 许耀. 频域OCT测量不同程度近视视网膜神经纤维层厚度中光学放大效应的影响[J]. 中华实验眼科杂志, 2019, 37(3): 206-211. doi:10.3760/cma.j.issn.2095-0160.2019.03.009 XU Lihui, QIN Ping, XU Yao. The effect of optical magnification during retinal nerve fiber layer thickness measurement in different degrees of myopia by using frequency domain OCT[J]. Chinese Journal of Experimental Ophthalmology, 2019, 37(3): 206-211. doi:10.3760/cma.j.issn.2095-0160.2019.03.009
[5] 邱坤良, 王耿, 张日平, 等. 眼轴长度和光学放大效应对频域OCT视网膜神经纤维层测量影响[J]. 中国实用眼科杂志, 2016, 34(8): 884-888. doi:10.3760/cma.j.issn.1006-4443.2016.08.030 QIU Kunliang, WANG Geng, ZHANG Riping, et al. The effects of axial length and optical magnification on retinal nerve fiber layer measurement with spectral domain OCT[J]. Chin J Pract Ophthalmol, 2016, 34(8): 884-888. doi:10.3760/cma.j.issn.1006-4443.2016.08.030
[6] Littmann H. Determination of the real size of an object on the fundus of the living eye[J]. Klin Monbl Augenheilkd, 1982, 180(4): 286-289. doi:10.1055/s-2008-1055068
[7] Bennett AG, Rudnicka AR, Edgar DF. Improvements on Littmann's method of determining the size of retinal features by fundus photography[J]. Graefes Arch Clin Exp Ophthalmol, 1994, 232(6): 361-367. doi:10.1007/BF00175988
[8] Nishikawa N, Chua J, Kawaguchi Y, et al. Macular microvasculature and associated retinal layer thickness in pediatric amblyopia: magnification-corrected analyses[J]. Invest Ophthalmol Vis Sci, 2021, 62(3): 39. doi:10.1167/iovs.62.3.39
[9] Petzold A, Balcer LJ, Calabresi PA, et al. Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis[J]. Lancet Neurol, 2017, 16(10): 797-812. doi:10.1016/S1474-4422(17)30278-8
[10] Salehi MA, Nowroozi A, Gouravani M, et al. Associations of refractive errors and retinal changes measured by optical coherence tomography: a systematic review and meta-analysis[J]. Surv Ophthalmol, 2022, 67(2): 591-607. doi:10.1016/j.survophthal.2021.07.007
[11] Lee YP, Ju YS, Choi DG. Ganglion cell-inner plexiform layer thickness by swept-source optical coherence tomography in healthy Korean children: normative data and biometric correlations[J]. Sci Rep, 2018, 8(1): 10605. doi:10.1038/s41598-018-28870-4
[12] Zhao Z, Jiang C. Effect of myopia on ganglion cell complex and peripapillary retinal nerve fibre layer measurements: a Fourier-domain optical coherence tomography study of young Chinese persons[J]. Clin Exp Ophthalmol, 2013, 41(6): 561-566. doi:10.1111/ceo.12045
[13] Dai Y, Xin C, Zhang Q, et al. Impact of ocular magnification on retinal and choriocapillaris blood flow quantification in myopia with swept-source optical coherence tomography angiography[J]. Quant Imaging Med Surg, 2021, 11(3): 948-956. doi:10.21037/qims-20-1011
[14] Higashide T, Ohkubo S, Hangai M, et al. Influence of clinical factors and magnification correction on normal thickness profiles of macular retinal layers using optical coherence tomography[J]. PLoS One, 2016, 11(1): e0147782. doi:10.1371/journal.pone.0147782
[15] Nowroozizadeh S, Cirineo N, Amini N, et al. Influence of correction of ocular magnification on spectral-domain OCT retinal nerve fiber layer measurement variability and performance[J]. Invest Ophthalmol Vis Sci, 2014, 55(6): 3439-3446. doi:10.1167/iovs.14-13880
[16] Chua J, Tham YC, Tan B, et al. Age-related changes of individual macular retinal layers among Asians[J]. Sci Rep, 2019, 9(1): 20352. doi:10.1038/s41598-019-56996-6
[17] Kim JH, Lee SH, Han JY, et al. Comparison of individual retinal layer thicknesses between highly myopic eyes and normal control eyes using retinal layer segmentation analysis[J]. Sci Rep, 2019, 9(1): 14000. doi:10.1038/s41598-019-50306-w
[18] Shpak AA, Korobkova MV. Causes of ganglion cell-inner plexiform layer thinning in myopic eyes[J]. Graefes Arch Clin Exp Ophthalmol, 2020, 258(1): 3-7. doi:10.1007/s00417-019-04513-w
[19] Cheng L, Wang M, Deng J, et al. Macular ganglion cell-inner plexiform layer, ganglion cell complex, and outer retinal layer thicknesses in a large cohort of Chinese children[J]. Invest Ophthalmol Vis Sci, 2019, 60(14): 4792-4802. doi:10.1167/iovs.18-26300
[20] Rakusiewicz K, Kanigowska K, Hautz W, et al. Investigating ganglion cell complex thickness in children with chronic heart failure due to dilated cardiomyopathy[J]. J Clin Med, 2020, 9(9): E2882. doi:10.3390/jcm9092882
[21] Jin PY, Deng JJ, Lv MZ, et al. Development of the Retina and its relation with myopic shift varies from childhood to adolescence[J]. Br J Ophthalmol, 2022, 106(6): 825-830. doi:10.1136/bjophthalmol-2020-318181
[22] Shariati MA, Park JH, Liao YJ. Optical coherence tomography study of retinal changes in normal aging and after ischemia[J]. Invest Ophthalmol Vis Sci, 2015, 56(5): 2790-2797. doi:10.1167/iovs.14-15145
[23] Nakano N, Hangai M, Noma H, et al. Macular imaging in highly myopic eyes with and without glaucoma[J]. Am J Ophthalmol, 2013, 156(3): 511-523.e6. doi:10.1016/j.ajo.2013.04.028
[1] TANG Feiran, KONG XiangyunOverview,SHEN JiaquanGuidance. Research progress in the role of OCTA in measuring superficial peripapillary vessel density in the diagnosis and treatment of glaucoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 77-82.
[2] DAI ChengOverview,LI BinzhongGuidance. Advances in multifocal soft corneal contact lens research [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(5): 100-105.
[3] YANG Ru, ZHANG Yuguang, XU Xianghui, WU Xuelian, TAO Yuan, TAN Yue. A clinical study on the effect of phacoemulsification on the retinal structure in the macular region of senile cataract [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(4): 97-102.
[4] ZHANG Taoran, WANG Wei, LI Mingming, HUANG Yingxiang. Subfoveal choroidal thickness changes following intravitreal ranibizumab treatment in choroidal neovascularization due to pathological myopia [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 68-71.
[5] PENG Jiao, ZHONG Dingjuan, CHEN Jiao, ZUO Jun, WANG Hua. The effect of the relationship between the diameter of the optical zone and the diameter of the dark pupil on the visual quality of patients with different degrees of myopia after SMILE [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 100-107.
[6] ZHANG Min,LI Yan. Research progress of optical coherence tomography and angiography in the diagnosis of Alzheimer's disease [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 157-162.
[7] LI Yingying, FENG Jie,LI Wei, DING Tianjiao. Effects of ischemic stroke and other neurodegenerative diseases on RNFL thickness [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(2): 163-168.
[8] LI Ying. Importance of standardized methods in corneal refractive surgery and the prevention of complications [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(6): 1-6.
[9] ZHANG Ying, LEI Yulin, MA Zhixing, YANG Xinghua, ZHANG Jing, HOU Jie. Early clinical observation of corneal densitometry after SMILE combined with rapid corneal cross-linking [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(6): 52-58.
[10] LIU Yi, YU Mingkun, SUN Wei, SHAO Zhen, HU Yuanyuan, BI Hongsheng. The effectiveness and safety of orthokeratology on controlling myopia of children: a meta-analysis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(6): 92-100.
[11] RAN Hongyun, JIANG Keke,,ZHANG Jie. Analysis of underlying factors of refractive errors in infants with retinopathy of prematurity [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(5): 118-124.
[12] ZHANG Xinyu,,LEI Chunyan, ZHANG Meixia. Retinochoriodal changes associated with silicone oil tamponade detected by optical coherence tomography and optical coherence tomography angiography [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(5): 132-136.
[13] YUE Pengcheng, DU Qiuxuan, KONG Ling, QIAO Zhentao. A controlled Study of the accommodative parameters of eyes with uncorrected myopic anisometropia [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(4): 76-80.
[14] LIU Ling,ZHANG Meixia. Drug therapy for myopia [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(4): 123-128.
[15] . Diagnosis and treatment of choroidal neovascularization in pathologic myopia [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(5): 157-162.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!