Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2025, Vol. 39 ›› Issue (5): 125-131.doi: 10.6040/j.issn.1673-3770.0.2023.339

• Review • Previous Articles    

The role of microRNA in nasopharyngeal carcinoma and its research progress

WANG Sheng1, LI Yindan2, YANG Jinji2   

  1. 1. Department of Otorhinolaryngology;
    2. Institute of Rescue Medicine, Featured Medical Center of Chinese People's Armed Police Forces, Tianjin 300162, China
  • Published:2025-09-19

Abstract: Nasopharyngeal carcinoma is a type of cancer that affects the mucous membrane in the nasopharynx. It is often associated with latent Epstein-Barr virus infection and is most common in the Asian population. In this type of cancer, microRNA(miRNA)plays a crucial role as both a tumor suppressor and an oncogene. By regulating specific target genes involved in various cellular processes and pathways, miRNA contributes to the development of nasopharyngeal carcinoma, and miRNA disorder is also related to patient prognosis and clinical outcome. Targeting miRNAs and their associated genes can be used as a therapeutic approach to enhance the sensitivity of nasopharyngeal carcinoma to radiotherapy and chemotherapy. Therefore, understanding the characteristics of miRNA and its application in the diagnosis, prognosis evaluation, and treatment of nasopharyngeal carcinoma is of great clinical importance.

Key words: Nasopharyngeal carcinoma, MicroRNA, EB virus, Biomarker

CLC Number: 

  • R739.6
[1] Huang HG, Yao YY, Deng XY, et al. Immunotherapy for nasopharyngeal carcinoma: current status and prospects(Review)[J]. Int J Oncol, 2023, 63(2): 97. doi:10.3892/ijo.2023.5545
[2] Howlett J, Hamilton S, Ye A, et al. Treatment and outcomes of nasopharyngeal carcinoma in a unique non-endemic population[J]. Oral Oncol, 2021, 114: 105182. doi:10.1016/j.oraloncology.2021.105182
[3] Yuan L, Li SB, Chen QY, et al. EBV infection-induced GPX4 promotes chemoresistance and tumor progression in nasopharyngeal carcinoma[J]. Cell Death Differ, 2022, 29(8): 1513-1527. doi:10.1038/s41418-022-00939-8
[4] Guo FF, Chen DY, Zong ZY, et al. Comprehensive analysis of aberrantly expressed circRNAs, mRNAs and lncRNAs in patients with nasopharyngeal carcinoma[J]. J Clin Lab Anal, 2023, 37(2): e24836. doi:10.1002/jcla.24836
[5] Thakur A, Kumar M. Integration of human and viral miRNAs in epstein-barr virus-associated tumors and implications for drug repurposing[J]. OMICS, 2023, 27(3): 93-108. doi:10.1089/omi.2023.0005
[6] 涂巧铃,李玉凤,彭军. 鼻咽癌中抗PD-L1/PD-1治疗及非编码RNA调控研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(5): 135-141. doi: 10.6040/j.issn.1673-3770.0.2022.214 TU Qiaoling, LI Yufeng, PENG Jun. Advances in anti-PD-L1/PD-1 therapy and non-coding RNA regulation in nasopharyngeal carcinoma[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(5): 135-141. doi: 10.6040/j.issn.1673-3770.0.2022.214
[7] Liang TS, Zheng YJ, Wang J, et al. MicroRNA-506 inhibits tumor growth and metastasis in nasopharyngeal carcinoma through the inactivation of the Wnt/β-catenin signaling pathway by down-regulating LHX2[J]. J Exp Clin Cancer Res, 2019, 38(1): 97. doi:10.1186/s13046-019-1023-4
[8] Zhang XF, Zheng RN, Jiang LJ, et al. MiR-331-3p inhibits proliferation and promotes apoptosis of nasopharyngeal carcinoma cells by targeting elf4B-PI3K-AKT pathway[J]. Technol Cancer Res Treat, 2020, 19: 1533033819892251. doi:10.1177/1533033819892251
[9] Zhao YJ, Li C, Zhang Y, et al. CircTMTC1 contributes to nasopharyngeal carcinoma progression through targeting miR-495-MET-eIF4G1 translational regulation axis[J]. Cell Death Dis, 2022, 13(3): 250. doi:10.1038/s41419-022-04686-z
[10] Zhu HM, Jiang XS, Li HZ, et al. MiR-184 inhibits tumor invasion, migration and metastasis in nasopharyngeal carcinoma by targeting Notch2[J]. Cell Physiol Biochem, 2018, 49(4): 1564-1576. doi:10.1159/000493459
[11] Luo SD, Tsai HT, Hwang CF, et al. Aberrant miR-874-3p/leptin/EGFR/c-Myc signaling contributes to nasopharyngeal carcinoma pathogenesis[J]. J Exp Clin Cancer Res, 2022, 41(1): 215. doi:10.1186/s13046-022-02415-0
[12] Yu D, Han GH, Zhao X, et al. MicroRNA-129-5p suppresses nasopharyngeal carcinoma lymphangiogenesis and lymph node metastasis by targeting ZIC2[J]. Cell Oncol(Dordr), 2020, 43(2): 249-261. doi:10.1007/s13402-019-00485-5
[13] Chen MH, Chen C, Luo HQ, et al. MicroRNA-296-5p inhibits cell metastasis and invasion in nasopharyngeal carcinoma by reversing transforming growth factor-β-induced epithelial-mesenchymal transition[J]. Cell Mol Biol Lett, 2020, 25(1): 49. doi:10.1186/s11658-020-00240-x
[14] Xu QL, Luo Z, Zhang B, et al. Methylation-associated silencing of miR-9-1 promotes nasopharyngeal carcinoma progression and glycolysis via HK2[J]. Cancer Sci, 2021, 112(10): 4127-4138. doi:10.1111/cas.15103
[15] Jiang C, Li L, Xiang YQ, et al. Epstein-barr virus miRNA BART2-5p promotes metastasis of nasopharyngeal carcinoma by suppressing RND3[J]. Cancer Res, 2020, 80(10): 1957-1969. doi:10.1158/0008-5472.CAN-19-0334
[16] Li MY, Huang HP, Cheng FW, et al. MiR-141-3p promotes proliferation and metastasis of nasopharyngeal carcinoma by targeting NME1[J]. Adv Med Sci, 2020, 65(2): 252-258. doi:10.1016/j.advms.2020.03.005
[17] Huang SJ, Ma G, Wang RF, et al. MicroRNA-142-5p promotes the proliferation and metastasis of nasopharyngeal carcinoma[J]. Nucleosides Nucleotides Nucleic Acids, 2023, 42(8): 657-670. doi:10.1080/15257770.2023.2182887
[18] Han JB, Huang ML, Li F, et al. MiR-214 mediates cell proliferation and apoptosis of nasopharyngeal carcinoma through targeting both WWOX and PTEN[J]. Cancer Biother Radiopharm, 2020, 35(8): 615-625. doi:10.1089/cbr.2019.2978
[19] Zhao YG, Gu X, Wang YP. MicroRNA-103 promotes nasopharyngeal carcinoma through targeting TIMP-3 and the Wnt/β-catenin pathway[J]. Laryngoscope, 2020, 130(3): E75-E82. doi:10.1002/lary.28045
[20] He HP, Liao XH, Yang QM, et al. MicroRNA-494-3p promotes cell growth, migration, and invasion of nasopharyngeal carcinoma by targeting Sox7[J]. Technol Cancer Res Treat, 2018, 17: 1533033818809993. doi:10.1177/1533033818809993
[21] Zheng YQ, Bai YF, Yang S, et al. MircoRNA-629 promotes proliferation, invasion and migration of nasopharyngeal carcinoma through targeting PDCD4[J]. Eur Rev Med Pharmacol Sci, 2019, 23(1): 207-216. doi:10.26355/eurrev_201901_16766
[22] Yan HL, Li L, Li SJ, et al. MiR-346 promotes migration and invasion of nasopharyngeal carcinoma cells via targeting BRMS1[J]. J Biochem Mol Toxicol, 2016, 30(12): 602-607. doi:10.1002/jbt.21827
[23] Chen C, Lu ZH, Yang J, et al. MiR-17-5p promotes cancer cell proliferation and tumorigenesis in nasopharyngeal carcinoma by targeting p21[J]. Cancer Med, 2016, 5(12): 3489-3499. doi:10.1002/cam4.863
[24] Huang QL, Hou S, Zhu XQ, et al. MicroRNA-192 promotes the development of nasopharyngeal carcinoma through targeting RB1 and activating PI3K/AKT pathway[J]. World J Surg Oncol, 2020, 18(1): 29. doi:10.1186/s12957-020-1798-y
[25] Wan XX, Yi H, Qu JQ, et al. Integrated analysis of the differential cellular and EBV miRNA expression profiles in microdissected nasopharyngeal carcinoma and non-cancerous nasopharyngeal tissues[J]. Oncol Rep, 2015, 34(5): 2585-2601. doi:10.3892/or.2015.4237
[26] Lu TZ, Guo QJ, Lin KY, et al. Circulating Epstein-Barr virus microRNAs BART7-3p and BART13-3p as novel biomarkers in nasopharyngeal carcinoma[J]. Cancer Sci, 2020, 111(5): 1711-1723. doi:10.1111/cas.14381
[27] Liu X, Luo HN, Tian WD, et al. Diagnostic and prognostic value of plasma microRNA deregulation in nasopharyngeal carcinoma[J]. Cancer Biol Ther, 2013, 14(12): 1133-1142. doi:10.4161/cbt.26170
[28] Zhuo XL, Zhou W, Li DR, et al. Plasma microRNA expression signature involving miR-548q, miR-630 and miR-940 as biomarkers for nasopharyngeal carcinoma detection[J]. Cancer Biomark, 2018, 23(4): 579-587. doi:10.3233/CBM-181852
[29] Wu LR, Zheng KX, Yan C, et al. Genome-wide study of salivary microRNAs as potential noninvasive biomarkers for detection of nasopharyngeal carcinoma[J]. BMC Cancer, 2019, 19(1): 843. doi:10.1186/s12885-019-6037-y
[30] Lin C, Lin KY, Zhang B, et al. Plasma epstein-barr virus microRNA BART8-3p as a diagnostic and prognostic biomarker in nasopharyngeal carcinoma[J]. Oncologist, 2022, 27(4): e340-e349. doi:10.1093/oncolo/oyac024
[31] Ruan Q, Yang XZ, Zhu L, et al. High miR-3650 expression in nasopharyngeal carcinoma and its clinical prognostic values[J]. Pathol Res Pract, 2021, 224: 153506. doi:10.1016/j.prp.2021.153506
[32] Zhu L, Ni ZG, Liang K, et al. The mechanism of miR-410-3p and miR-34c in nasopharyngeal carcinoma development and progression[J]. Cell Mol Biol, 2021, 67(2): 114-120. doi:10.14715/cmb/2021.67.2.17
[33] Zhang T, Tang Y, Jin Y, et al. Downregulation of miRNA-429 and upregulation of SOX2 were unfavorable to the prognosis of nasopharyngeal carcinoma[J]. Eur Rev Med Pharmacol Sci, 2020, 24(16): 8402-8407. doi:10.26355/eurrev_202008_22637
[34] 王中卫, 杨林, 郭亚, 等. 鼻咽癌患者miR-429、miR-200C表达与预后关系分析[J]. 山东大学耳鼻喉眼学报, 2021, 35(3): 81-86. doi: 10.6040/j.issn.1673-3770.0.2020.016 WANG Zhongwei, YANG Lin, GUO Ya, et al. Analysis of the relationship between miR-429 and miR-200C expression and prognosis in patients with nasopharyngeal carcinoma[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2021, 35(3): 81-86. doi: 10.6040/j.issn.1673-3770.0.2020.016
[35] Zhong JH, Zhong JJ, Shi YN, et al. Prognostic potentials of miRNA-19a-3p and PDCD5 in nasopharynx carcinoma[J]. Eur Rev Med Pharmacol Sci, 2020, 24(21): 11114-11119. doi:10.26355/eurrev_202011_23598
[36] Zhou XQ, Zheng L, Zeng CY, et al. MiR-302c-5p affects the stemness and cisplatin resistance of nasopharyngeal carcinoma cells by regulating HSP90AA1[J]. Anticancer Drugs, 2023, 34(1): 135-143. doi:10.1097/CAD.0000000000001392
[37] Zhao YY, Wang PH, Wu QW. MiR-1278 sensitizes nasopharyngeal carcinoma cells to cisplatin and suppresses autophagy via targeting ATG2B[J]. Mol Cell Probes, 2020, 53: 101597. doi:10.1016/j.mcp.2020.101597
[38] Li JX, Hu CQ, Chao H, et al. Exosomal transfer of miR-106a-5p contributes to cisplatin resistance and tumorigenesis in nasopharyngeal carcinoma[J]. J Cell Mol Med, 2021, 25(19): 9183-9198. doi:10.1111/jcmm.16801
[39] Chen J, Lu FK, Hu CM. MicroRNA-299 targets VEGFA and inhibits the growth, chemosensitivity and invasion of human nasopharyngeal carcinoma cells[J]. J BUON, 2019, 24(5): 2049-2055
[40] Peng XW, Cao PG, Li JJ, et al. MiR-1204 sensitizes nasopharyngeal carcinoma cells to paclitaxel both in vitro and in vivo[J]. Cancer Biol Ther, 2015, 16(2): 261-267. doi:10.1080/15384047.2014.1001287
[41] Wan FZ, Chen KH, Sun YC, et al. Exosomes overexpressing miR-34c inhibit malignant behavior and reverse the radioresistance of nasopharyngeal carcinoma[J]. J Transl Med, 2020, 18(1): 12. doi:10.1186/s12967-019-02203-z
[42] Jiang JH, Tang Q, Gong JE, et al. Radiosensitizer EXO-miR-197-3p inhibits nasopharyngeal carcinoma progression and radioresistance by regulating the AKT/mTOR axis and HSPA5-mediated autophagy[J]. Int J Biol Sci, 2022, 18(5): 1878-1895. doi:10.7150/ijbs.69934
[43] Tang J, Liu ZY, Tang Y, et al. Effects of Dicer1 targeted by EBV-miR-BART6-5p on biological properties and radiosensitivity of nasopharyngeal carcinoma[J]. Hum Exp Toxicol, 2021, 40(6): 977-993. doi:10.1177/0960327120979020
[44] Zhan SQ, Ni BL. Hsa-miR-9-5p down-regulates HK2 and confers radiosensitivity to nasopharyngeal carcinoma[J]. Technol Cancer Res Treat, 2021, 20: 1533033821997822. doi:10.1177/1533033821997822
[45] Deng LQ, Yin Q, Liu SY, et al. MicroRNA-613 enhances nasopharyngeal carcinoma cell radiosensitivity via the DNA methyltransferase 3B/Tissue inhibitor of matrix metalloproteinase-3/signal transducer and activator of transcription-1/forkhead box O-1 axis[J]. Dis Markers, 2022: 5699275. doi:10.1155/2022/5699275
[1] QIU Qianhui, XIAO Xuping, YANG Qintai, YE Jing, DENG Zeyi, WANG Desheng, TAN Guolin, JIANG weihong,. Expert consensus on clinical management recommendations for carotid blowout syndrome secondary to NPC treatment [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2025, 39(4): 1-18.
[2] WANG Siquan, ZHU Hongshen, ZHANG Xiaobin, ZHAO Zhouyang, MA Yue, YANG Yimei, HUANG Lijin. Analysis of factors associated with stroke and cranial nerve palsy after unilateral internal carotid artery embolization in patients with nasopharyngeal carcinoma after radiotherapy [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2025, 39(4): 19-25.
[3] HUANG Qiao, REN Yi, HOU Tao, LIAO Xingwei, ZHU Zi’ang, ZHAN Xiaolin, LIU Ying, YIN Shihua. Expression of EphB2 in nasopharyngeal carcinoma tissues and its correlation with clinicopathological characteristics [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2025, 39(4): 26-30.
[4] SUN Chunxiao, WANG Wenqing, YUE Tian, LIU Jisheng. Efficacy analysis of concurrent chemoradiotherapy with high and low cumulative cisplatin doses in the treatment of nasopharyngeal carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2025, 39(4): 31-41.
[5] WANG Zaixing, TANG Zhiyuan, LI Dingbo, SHI Zhaohui, ZENG Xianhai, ZHANG Qiuhang. Treatment of internal carotid artery rupture caused by tumor recurrence and skull base osteonecrosis after radiotherapy for nasopharyngeal carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2025, 39(4): 49-58.
[6] SUN Fang, XIE Chubo, QIU Qianhui. Retrospective analysis of nutritional indexes and their impact on wound healing in patients with radiation-induced skull base osteoradionecrosis after treatment with nasopharyngeal carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2025, 39(4): 59-68.
[7] ZHU Ruikai, WU Jiarong, SUN Fang, XIE Chubo, QIU Qianhui. Computed tomography angiography-based assessment of internal carotid artery stenosis after radiotherapy for nasopharyngeal carcinoma and its associated factors [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2025, 39(4): 77-84.
[8] QIN Debo, XUE Jiancheng, YANG Wenyue, HU Bing, CHEN Tao, YU Yanping, MENG Qingguo, SUN Huanji, MIAO Beiping, LU Yongtian. Changing the diagnosis and treatment of nasopharyngeal cancer: biomarkers and nasal endoscopic surgery synergise to advance early treatment development [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2025, 39(4): 85-92.
[9] WU Jiarong, QIU Qianhui. The role and significance of the skull base fascial tissue barrier in endoscopic resection of locally early recurrent nasopharyngeal carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2025, 39(4): 108-113.
[10] YANG Ming, LIU Xuexia, ZHANG Hua. Progress of m6A recognition protein IGF2BPs in head and neck cancer [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2025, 39(3): 153-161.
[11] WU Min, LI Zhengyang, MENG Jie, YE Huiping. Molecular mechanisms of programmed cell death and its role in nasopharyngeal carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2025, 39(2): 152-157.
[12] ZHOU Heqing, SHEN Qi. Research progress on biomarkers of traditional Chinese medicine in the treatment of allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2025, 39(2): 168-176.
[13] ZHANG Maohua, WEI Rifu, ZHU Zhongshou, LIU Ping, GAO Shang, LI Huifeng. Effect of LncRNA PCAT-1 on the biological behaviour and chemosensitivity of nasopharyngeal carcinoma cells [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2025, 39(1): 68-76.
[14] ZHANG Shan, CHEN Qiu, ZHOU Fangwei, MA Yifei. Research progress of biomarkers in laryngopharyngeal reflux disease [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(6): 46-54.
[15] ZHANG Jingyi, DONG Xiangyi, MU Yakui, SONG Xicheng. Research progress on pyroptosis in otorhinolaryngology diseases [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(4): 140-148.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!