Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2025, Vol. 39 ›› Issue (3): 153-161.doi: 10.6040/j.issn.1673-3770.0.2024.240

• Review • Previous Articles    

Progress of m6A recognition protein IGF2BPs in head and neck cancer

YANG Ming1,2, LIU Xuexia3, ZHANG Hua2   

  1. 1. The 2nd Medical College of Binzhou Medical University, Yantai 264100, Shandong, China 2. Department of Otorhinolaryngology & Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University/ Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases/ Yantai Key Laboratory of Otorhinolaryngologic Diseases/ Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai 264000, Shandong, China3. Central Laboratory, Yantai Yuhuangding Hospital, Qingdao University, Yantai 264000, Shandong, China
  • Published:2025-06-04

Abstract: RNA epigenetic modifications play a crucial role in tumor development, with N6-methyladenosine being the primary epigenetic modification found in all eukaryotic messenger RNAs. Recently discovered, the m6A reader family known as IGF2BPs targets GG(m6A)C sequences and enhances mRNA stability, thereby promoting tumor cell proliferation, invasion and migration, and contributing to tumorigenesis and development. This paper aims to review the involvement of IGF2BPs in head and neck tumors along with their underlying mechanisms, providing new insights for clinical molecular targeting therapy on IGF2BPs.

Key words: N6-methyladenos, Insulin-like growth factor-2 mRNA-binding protein 1, Head and neck squamous cell carcinoma, Nasopharyngeal carcinoma, Oral squamous cell carcinoma, Laryngeal squamous cell carcinoma, Hypopharyngeal cancer, Esophageal squamous-cell carcinoma, Thyroid cancer

CLC Number: 

  • R762
[1] Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. doi:10.3322/caac.21660
[2] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018[J]. CA A Cancer J Clinicians, 2018, 68(1): 7-30. doi:10.3322/caac.21442
[3] Johnson DE, Burtness B, Leemans CR, et al. Head and neck squamous cell carcinoma[J]. Nat Rev Dis Primers, 2020, 6(1): 92. doi:10.1038/s41572-020-00224-3
[4] Garneau JC, Bakst RL, Miles BA. Hypopharyngeal cancer: a state of the art review[J]. Oral Oncol, 2018, 86: 244-250. doi: 10.1016/j.oraloncology.2018.09.025
[5] Galloway TJ, Ridge JA. Management of squamous cancer metastatic to cervical nodes with an unknown primary site[J]. J Clin Oncol, 2015, 33(29): 3328-3337. doi:10.1200/JCO.2015.61.0063
[6] Sun T, Wu RY, Ming L. The role of m6A RNA methylation in cancer[J]. Biomed Pharmacother, 2019, 112: 108613. doi:10.1016/j.biopha.2019.108613
[7] Fu Y, Dominissini D, Rechavi G, et al. Gene expression regulation mediated through reversible m6 A RNA methylation[J]. Nat Rev Genet, 2014, 15(5): 293-306. doi:10.1038/nrg3724
[8] Hu YY, Wang SM, Liu J, et al. New sights in cancer: Component and function of N6-methyladenosine modification[J]. Biomed Pharmacother, 2020, 122: 109694. doi:10.1016/j.biopha.2019.109694
[9] Chen B, Li Y, Song RF, et al. Functions of RNA N6-methyladenosine modification in cancer progression[J]. Mol Biol Rep, 2019, 46(2): 2567-2575. doi:10.1007/s11033-019-04655-4
[10] Tuncel G, Kalkan R. Importance of m N6-methyladenosine(m6A)RNA modification in cancer[J]. Med Oncol, 2019, 36(4): 36. doi:10.1007/s12032-019-1260-6
[11] 周子寒, 周先果, 陈佩琴, 等. m6A结合蛋白IGF2BP1在肝细胞癌中的基因调控网络分析[J]. 中国癌症防治杂志, 2020, 12(6): 675-680. doi:10.3969/j.issn.1674-5671.2020.06.14 ZHOU Zihan, ZHOU Xianguo, CHEN Peiqin, et al. Gene regulatory network analysis of m6A reader IGF2BP1 in hepatocellular carcinoma[J]. Chinese Journal of Oncology Prevention and Treatment, 2020, 12(6): 675-680. doi:10.3969/j.issn.1674-5671.2020.06.14
[12] Jiang XL, Liu BY, Nie Z, et al. The role of m6A modification in the biological functions and diseases[J]. Signal Transduct Target Ther, 2021, 6(1): 74. doi:10.1038/s41392-020-00450-x
[13] Huang XW, Zhang H, Guo XR, et al. Insulin-like growth factor 2 mRNA-binding protein 1(IGF2BP1)in cancer[J]. J Hematol Oncol, 2018, 11(1): 88. doi:10.1186/s13045-018-0628-y
[14] Du QY, Zhu ZM, Pei DS. The biological function of IGF2-BPs and the irrolein tumor igenesis[J]. Investig New Drugs, 2021, 39(6): 1682-1693. doi:10.1007/s10637-021-01148-9
[15] Huang HL, Weng HY, Sun WJ, et al. Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation[J]. Nat Cell Biol, 2018, 20(3): 285-295. doi:10.1038/s41556-018-0045-z
[16] Wächter K, Köhn M, Stöhr N, et al. Subcellular localization and RNP formation of IGF2BPs(IGF2 mRNA-binding proteins)is modulated by distinct RNA-binding domains[J]. Biol Chem, 2013, 394(8): 1077-1090. doi:10.1515/hsz-2013-0111
[17] Dai LR, Liang WL, Shi ZM, et al. Systematic characterization and biological functions of non-coding RNAs in glioblastoma[J]. Cell Prolif, 2023, 56(3): e13375. doi:10.1111/cpr.13375
[18] Liu HT, Zou YX, Zhu WJ, et al. lncRNA THAP7-AS1, transcriptionally activated by SP1 and post-transcriptionally stabilized by METTL3-mediated m6A modification, exerts oncogenic properties by improving CUL4B entry into the nucleus[J]. Cell Death Differ, 2022, 29(3): 627-641. doi:10.1038/s41418-021-00879-9
[19] Liu Y, Guo Q, Yang H, et al. Allosteric regulation of IGF2BP1 as a novel strategy for the activation of tumor immune microenvironment[J]. ACS Cent Sci, 2022, 8(8): 1102-1115. doi:10.1021/acscentsci.2c00107
[20] Roundtree IA, Evans ME, Pan T, et al. Dynamic RNA modifications in gene expression regulation[J]. Cell, 2017, 169(7): 1187-1200. doi:10.1016/j.cell.2017.05.045
[21] Han DL, Liu J, Chen CY, et al. Anti-tumour immunity controlled through mRNA m6A methylation and YTHDF1 in dendritic cells[J]. Nature, 2019, 566(7743): 270-274. doi:10.1038/s41586-019-0916-x
[22] Bell JL, Turlapati R, Liu T, et al. IGF2BP1 harbors prognostic significance by gene gain and diverse expression in neuroblastoma[J]. J Clin Oncol, 2015, 33(11): 1285-1293. doi:10.1200/JCO.2014.55.9880
[23] Gu TW, Horová E, Möllsten A, et al. IGF2BP2 and IGF2 genetic effects in diabetes and diabetic nephropathy[J]. J Diabetes Complications, 2012, 26(5): 393-398. doi:10.1016/j.jdiacomp.2012.05.012
[24] Mancarella C, Scotlandi K. IGF2BP3 from physiology to cancer: novel discoveries, unsolved issues, and future perspectives[J]. Front Cell Dev Biol, 2019, 7: 363. doi:10.3389/fcell.2019.00363
[25] Farina KL, Huttelmaier S, Musunuru K, et al. Two ZBP1 KH domains facilitate beta-actin mRNA localization, granule formation, and cytoskeletal attachment[J]. J Cell Biol, 2003, 160(1): 77-87. doi:10.1083/jcb.200206003
[26] Nielsen J, Adolph SK, Rajpert-De Meyts E, et al. Nuclear transit of human zipcode-binding protein IMP1[J]. Biochem J, 2003, 376(Pt 2): 383-391. doi:10.1042/BJ20030943
[27] Nielsen J, Kristensen MA, Willemoës M, et al. Sequential dimerization of human zipcode-binding protein IMP1 on RNA: a cooperative mechanism providing RNP stability[J]. Nucleic Acids Res, 2004, 32(14): 4368-4376. doi:10.1093/nar/gkh754
[28] Tang H, Zhao JJ, Liu JP. Comprehensive analysis of the expression of the IGF2BPs gene family in head and neck squamous cell carcinoma: association with prognostic value and tumor immunity[J]. Heliyon, 2023, 9(10): e20659. doi:10.1016/j.heliyon.2023.e20659
[29] Lin SH, Lin CW, Lu JW, et al. Cytoplasmic IGF2BP2 protein expression in human patients with oral squamous cell carcinoma: prognostic and clinical implications[J]. Int J Med Sci, 2022, 19(7): 1198-1204. doi:10.7150/ijms.74751
[30] Hwang YS, Ahn SY, Moon S, et al. Insulin-like growth factor-II mRNA binding protein-3 and podoplanin expression are associated with bone invasion and prognosis in oral squamous cell carcinoma[J]. Arch Oral Biol, 2016, 69: 25-32. doi:10.1016/j.archoralbio.2016.05.008
[31] Gu YM, Niu SX, Wang Y, et al. DMDRMR-Mediated regulation of m6A-Modified CDK4 by m6A reader IGF2BP3 drives ccRCC progression[J]. Cancer Res, 2021, 81(4): 923-934. doi:10.1158/0008-5472.CAN-20-1619
[32] Xu WH, Lai YN, Pan YQ, et al. m6A RNA methylation-mediated NDUFA4 promotes cell proliferation and metabolism in gastric cancer[J]. Cell Death Dis, 2022, 13(8): 715. doi:10.1038/s41419-022-05132-w
[33] Liu Y, Guo Q, Yang H, et al. Allosteric regulation of IGF2BP1 as a novel strategy for the activation of tumor immune microenvironment[J]. ACS Cent Sci, 2022, 8(8): 1102-1115. doi:10.1021/acscentsci.2c00107
[34] Du MY, Peng Y, Li Y, et al. MYC-activated RNA N6-methyladenosine reader IGF2BP3 promotes cell proliferation and metastasis in nasopharyngeal carcinoma[J]. Cell Death Discov, 2022, 8(1): 53. doi:10.1038/s41420-022-00844-6
[35] Leng F, Miu YY, Zhang Y, et al. A micro-peptide encoded by HOXB-AS3 promotes the proliferation and viability of oral squamous cell carcinoma cell lines by directly binding with IGF2BP2 to stabilize c-Myc[J]. Oncol Lett, 2021, 22(4): 697. doi:10.3892/ol.2021.12958
[36] Ye M, Dong S, Hou HT, et al. Oncogenic role of long noncoding RNAMALAT1 in thyroid cancer progression through regulation of the miR-204/IGF2BP2/m6A-MYC signaling[J]. Mol Ther Nucleic Acids, 2021, 23: 1-12. doi:10.1016/j.omtn.2020.09.023
[37] Bugter JM, Fenderico N, Maurice MM. Mutations and mechanisms of WNT pathway tumour suppressors in cancer[J]. Nat Rev Cancer, 2021, 21(1): 5-21. doi:10.1038/s41568-020-00307-z
[38] Tong SQ, Wang XY, Guo XR, et al. Knockdown of lncRNA IGF2BP2-AS1 inhibits proliferation and migration of oral squamous cell carcinoma cells via the Wnt/β-catenin pathway[J]. J Oral Pathol Med, 2022, 51(3): 272-280. doi:10.1111/jop.13248
[39] Zheng ZQ, Li ZX, Guan JL, et al. Long noncoding RNA TINCR-mediated regulation of acetyl-CoA metabolism promotes nasopharyngeal carcinoma progression and chemoresistance[J]. Cancer Res, 2020, 80(23): 5174-5188. doi:10.1158/0008-5472.CAN-19-3626
[40] Li JL, Cao H, Yang JW, et al. CircCDK1 blocking IGF2BP2-mediated m6A modification of CPPED1 promotes laryngeal squamous cell carcinoma metastasis via the PI3K/AKT signal pathway[J]. Gene, 2023, 884: 147686. doi:10.1016/j.gene.2023.147686
[41] Xu Y, Guo ZB, Peng HW, et al. IGF2BP3 promotes cell metastasis and is associated with poor patient survival in nasopharyngeal carcinoma[J]. J Cell Mol Med, 2022, 26(2): 410-421. doi:10.1111/jcmm.17093
[42] Lin CW, Yang WE, Su CW, et al. IGF2BP2 promotes cell invasion and epithelial-mesenchymal transition through Src-mediated upregulation of EREG in oral cancer[J]. Int J Biol Sci, 2024, 20(3): 818-830. doi:10.7150/ijbs.91786
[43] Yang RT, Wan JH, Ma LW, et al. TMEM44-AS1 promotes esophageal squamous cell carcinoma progression by regulating the IGF2BP2-GPX4 axis in modulating ferroptosis[J]. Cell Death Discov, 2023, 9(1): 431. doi:10.1038/s41420-023-01727-0
[44] Liang JF, Cai HS, Hou C, et al. METTL14 inhibits malignant progression of oral squamous cell carcinoma by targeting the autophagy-related gene RB1CC1 in an m6A-IGF2BP2-dependent manner[J]. Clin Sci, 2023, 137(17): 1373-1389. doi:10.1042/CS20230219
[45] Xu K, Dai XJ, Wu JK, et al. N6-methyladenosine(m6A)reader IGF2BP2 stabilizes HK2 stability to accelerate the Warburg effect of oral squamous cell carcinoma progression[J]. J Cancer Res Clin Oncol, 2022, 148(12): 3375-3384. doi:10.1007/s00432-022-04093-z
[46] Huang JP, Sun W, Wang ZH, et al. FTO suppresses glycolysis and growth of papillary thyroid cancer via decreasing stability of APOE mRNA in an N6-methyladenosine-dependent manner[J]. J Exp Clin Cancer Res, 2022, 41(1): 42. doi:10.1186/s13046-022-02254-z
[47] Yang XD, Liu JS. Targeting PD-L1(Programmed death-ligand 1)and inhibiting the expression of IGF2BP2(Insulin-like growth factor 2 mRNA-binding protein 2)affect the proliferation and apoptosis of hypopharyngeal carcinoma cells[J]. Bioengineered, 2021, 12(1): 7755-7764. doi:10.1080/21655979.2021.1983278
[48] Chua MLK, Wee JTS, Hui EP, et al. Nasopharyngeal carcinoma[J]. Lancet, 2016, 387(10022): 1012-1024. doi:10.1016/S0140-6736(15)00055-0
[49] Zhang Y, Chen L, Hu GQ, et al. Gemcitabine and cisplatin induction chemotherapy in nasopharyngeal carcinoma[J]. N Engl J Med, 2019, 381(12): 1124-1135. doi:10.1056/NEJMoa1905287
[50] Wang SS, Lv Y, Xu XC, et al. Triptonide inhibits human nasopharyngeal carcinoma cell growth via disrupting Lnc-RNA THOR-IGF2BP1 signaling[J]. Cancer Lett, 2019, 443: 13-24. doi:10.1016/j.canlet.2018.11.028
[51] Lu SS, Yu ZZ, Xiao ZQ, et al. Gene signatures and prognostic values of m6A genes in nasopharyngeal carcinoma[J]. Front Oncol, 2020, 10: 875. doi:10.3389/fonc.2020.00875
[52] Guo DQ, Liu F, Zhang L, et al. Long non-coding RNA AWPPH enhances malignant phenotypes in nasopharyngeal carcinoma via silencing PTEN through interacting with LSD1 and EZH2[J]. Biochem Cell Biol, 2021, 99(2): 195-202. doi:10.1139/bcb-2019-0497
[53] Li ZX, Zheng ZQ, Yang PY, et al. WTAP-mediated m6A modification of lncRNA DIAPH1-AS1 enhances its stability to facilitate nasopharyngeal carcinoma growth and metastasis[J]. Cell Death Differ, 2022, 29(6): 1137-1151. doi:10.1038/s41418-021-00905-w
[54] Chen BY, Huang RD, Xia TL, et al. The m6A reader IGF2BP3 preserves NOTCH3 mRNA stability to sustain Notch3 signaling and promote tumor metastasis in nasopharyngeal carcinoma[J]. Oncogene, 2023, 42(48): 3564-3574. doi:10.1038/s41388-023-02865-6
[55] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. doi:10.3322/caac.21492
[56] Bhattacharya A, Roy R, Snijders AM, et al. Two distinct routes to oral cancer differing in genome instability and risk for cervical node metastasis[J]. Clin Cancer Res, 2011, 17(22): 7024-7034. doi:10.1158/1078-0432.CCR-11-1944
[57] Wang XP, Xu HY, Zhou Z, et al. IGF2BP2 maybe a novel prognostic biomarker in oral squamous cell carcinoma[J]. Biosci Rep, 2022, 42(2): BSR20212119. doi:10.1042/BSR20212119
[58] Qiu LH, Zheng LL, Gan CW, et al. circBICD2 targets miR-149-5p/IGF2BP1 axis to regulate oral squamous cell carcinoma progression[J]. J Oral Pathol Med, 2021, 50(7): 668-680. doi:10.1111/jop.13156
[59] Yang HJ, Fu GL, Liu FN, et al. LncRNA THOR promotes tongue squamous cell carcinomas by stabilizing IGF2BP1 downstream targets[J]. Biochimie, 2019, 165: 9-18. doi:10.1016/j.biochi.2019.06.012
[60] Xu L, Li QX, Wang YF, et al. m6A methyltransferase METTL3 promotes oral squamous cell carcinoma progression through enhancement of IGF2BP2-mediated SLC7A11 mRNA stability[J]. Am J Cancer Res, 2021, 11(11): 5282-5298
[61] Liu JP, Jiang X, Zou AL, et al. circIGHG-induced epithelial-to-mesenchymal transition promotes oral squamous cell carcinoma progression via miR-142-5p/IGF2BP3 signaling[J]. Cancer Res, 2021, 81(2): 344-355. doi:10.1158/0008-5472.CAN-20-0554
[62] Zhang XL, Jung IH, Hwang YS. EGF enhances low-invasive cancer cell invasion by promoting IMP-3 expression[J]. Tumour Biol, 2016, 37(2): 2555-2563. doi:10.1007/s13277-015-4099-2
[63] Nocini R, Molteni G, Mattiuzzi C, et al. Updates on larynx cancer epidemiology[J]. Chin J Cancer Res, 2020, 32(1): 18-25. doi:10.21147/j.issn.1000-9604.2020.01.03
[64] Badwal JS. Total laryngectomy for treatment of T4 laryngeal cancer: trends and survival outcomes[J]. Pol Przegl Chir, 2018, 91(3): 30-37. doi:10.5604/01.3001.0012.2307
[65] Tang XJ, Tang QL, Li SS, et al. IGF2BP2 acts as a m6A modification regulator in laryngeal squamous cell carcinoma through facilitating CDK6 mRNA stabilization[J]. Cell Death Discov, 2023, 9(1): 371. doi:10.1038/s41420-023-01669-7
[66] Li JL, Cao H, Yang JW, et al. IGF2BP2-m6A-circMMP9 axis recruits ETS1 to promote TRIM59 transcription in laryngeal squamous cell carcinoma[J]. Sci Rep, 2024, 14(1): 3014. doi:10.1038/s41598-024-53422-4
[67] Mar zi c D, Mariji c B, Braut T, et al. IMP3 protein overexpression is linked to unfavorable outcome in laryngeal squamous cell carcinoma[J]. Cancers, 2021, 13(17): 4306. doi:10.3390/cancers13174306
[68] Yang LK, Yan BR, Qu LM, et al. IGF2BP3 regulates TMA7-mediated autophagy and cisplatin resistance in laryngeal cancer via m6A RNA methylation[J]. Int J Biol Sci, 2023, 19(5): 1382-1400. doi:10.7150/ijbs.80921
[69] Wang X, Tian LL, Li YS, et al. RBM15 facilitates laryngeal squamous cell carcinoma progression by regulating TMBIM6 stability through IGF2BP3 dependent[J]. J Exp Clin Cancer Res, 2021, 40(1): 80. doi:10.1186/s13046-021-01871-4
[70] An CM, Sun Y, Miao SS, et al. Retropharyngeal lymph node metastasis diagnosed by magnetic resonance imaging in hypopharyngeal carcinoma: a retrospective analysis from Chinese multi-center data[J]. Front Oncol, 2021, 11: 649540. doi:10.3389/fonc.2021.649540
[71] Yang T, Hui RT, Nouws J, et al. Untargeted metabolomics analysis of esophageal squamous cell cancer progression[J]. J Transl Med, 2022, 20(1): 127. doi:10.1186/s12967-022-03311-z
[72] Yan AT, Wang CZ, Zheng LF, et al. microRNA-454-3p inhibits cell proliferation and invasion in esophageal cancer by targeting insulin-like growth factor 2 mRNA-binding protein 1[J]. Oncol Lett, 2020, 20(6): 359. doi:10.3892/ol.2020.12223
[73] Fang XY, Sun JJ, Chen SY, et al. IGF2BP1/UHRF2 axis mediated by miR-98-5p to promote the proliferation of and inhibit the apoptosis of esophageal squamous cell carcinoma[J]. Ann Clin Lab Sci, 2021, 51(3): 329-338
[74] Zhao YH, Li Y, Zhu R, et al. RPS15 interacted with IGF2BP1 to promote esophageal squamous cell carcinoma development via recognizing m6A modification[J]. Signal Transduct Target Ther, 2023, 8(1): 224. doi:10.1038/s41392-023-01428-1
[75] Wang JJ, Chen DX, Zhang Y, et al. Elevated expression of the RNA-binding protein IGF2BP1 enhances the mRNA stability of INHBA to promote the invasion and migration of esophageal squamous cancer cells[J]. Exp Hematol Oncol, 2023, 12(1): 75. doi:10.1186/s40164-023-00429-8
[76] Lu FY, Chen WC, Jiang TW, et al. Expression profile, clinical significance and biological functions of IGF2BP2 in esophageal squamous cell carcinoma[J]. Exp Ther Med, 2022, 23(4): 252. doi:10.3892/etm.2022.11177
[77] Wang C, Zhou MX, Zhu PY, et al. IGF2BP2-induced circRUNX1 facilitates the growth and metastasis of esophageal squamous cell carcinoma through miR-449b-5p/FOXP3 axis[J]. J Exp Clin Cancer Res, 2022, 41(1): 347. doi:10.1186/s13046-022-02550-8
[78] Xiao YH, Tang JM, Yang DS, et al. Long noncoding RNA LIPH-4 promotes esophageal squamous cell carcinoma progression by regulating the miR-216b/IGF2BP2 axis[J]. Biomark Res, 2022, 10(1): 60. doi:10.1186/s40364-022-00408-x
[79] Wu XD, Fan YH, Liu YP, et al. Long non-coding RNA CCAT2 promotes the development of esophageal squamous cell carcinoma by inhibiting miR-200b to upregulate the IGF2BP2/TK1 axis[J]. Front Oncol, 2021, 11: 680642. doi:10.3389/fonc.2021.680642
[80] Zhao R, Li T, Zhao X, et al. The m6A reader IGF2BP2 promotes the progression of esophageal squamous cell carcinoma cells by increasing the stability of OCT4 mRNA[J]. Biochem Cell Biol, 2024, 102(2): 169-178. doi:10.1139/bcb-2023-0067
[81] Huang GW, Chen QQ, Ma CC, et al. linc01305 promotes metastasis and proliferation of esophageal squamous cell carcinoma through interacting with IGF2BP2 and IGF2BP3 to stabilize HTR3A mRNA[J]. Int J Biochem Cell Biol, 2021, 136: 106015. doi:10.1016/j.biocel.2021.106015
[82] Qian LX, Cao X, Du MY, et al. KIF18A knockdown reduces proliferation, migration, invasion and enhances radiosensitivity of esophageal cancer[J]. Biochem Biophys Res Commun, 2021, 557: 192-198. doi:10.1016/j.bbrc.2021.04.020
[83] Feng YD, Lin YB, Jiang ZY, et al. Insulin-like growth factor-2 mRNA-binding protein 3 promotes cell migration, invasion, and epithelial-mesenchymal transition of esophageal squamous cell carcinoma cells by targeting zinc finger E-box-binding homeobox 1 mRNA[J]. Mol Carcinog, 2023, 62(4): 503-516. doi:10.1002/mc.23502
[84] Kim J, Gosnell JE, Roman SA. Geographic influences in the global rise of thyroid cancer[J]. Nat Rev Endocrinol, 2020, 16(1): 17-29. doi:10.1038/s41574-019-0263-x
[85] Dong LP, Geng ZS, Liu Z, et al. IGF2BP2 knockdown suppresses thyroid cancer progression by reducing the expression of long non-coding RNA HAGLR[J]. Pathol Res Pract, 2021, 225: 153550. doi:10.1016/j.prp.2021.153550
[86] Panebianco F, Kelly LM, Liu PY, et al. THADA fusion is a mechanism of IGF2BP3 activation and IGF1R signaling in thyroid cancer[J]. Proc Natl Acad Sci USA, 2017, 114(9): 2307-2312. doi:10.1073/pnas.1614265114
[87] Wang WL, Ding Y, Zhao YZ, et al. m6A reader IGF2BP2 promotes lymphatic metastasis by stabilizing DPP4 in papillary thyroid carcinoma[J]. Cancer Gene Ther, 2024, 31(2): 285-299. doi:10.1038/s41417-023-00702-2
[88] Molinaro E, Romei C, Biagini A, et al. Anaplastic thyroid carcinoma: from clinicopathology to genetics and advanced therapies[J]. Nat Rev Endocrinol, 2017, 13(11): 644-660. doi:10.1038/nrendo.2017.76
[89] Haase J, Misiak D, Bauer M, et al. IGF2BP1 is the first positive marker for anaplastic thyroid carcinoma diagnosis[J]. Mod Pathol, 2021, 34(1): 32-41. doi:10.1038/s41379-020-0630-0
[90] Sa R, Guo ML, Liu DY, et al. AhR antagonist promotes differentiation of papillary thyroid cancer via regulating circSH2B3/miR-4640-5P/IGF2BP2 axis[J]. Front Pharmacol, 2021, 12: 795386. doi:10.3389/fphar.2021.795386
[91] Sa R, Liang R, Qiu X, et al. Targeting IGF2BP2 promotes differentiation of radioiodine refractory papillary thyroid cancer via destabilizing RUNX2 mRNA[J]. Cancers, 2022, 14(5): 1268. doi:10.3390/cancers14051268
[92] Sa R, Liang R, Qiu X, et al. IGF2BP2-dependent activation of ERBB2 signaling contributes to acquired resistance to tyrosine kinase inhibitor in differentiation therapy of radioiodine-refractory papillary thyroid cancer[J]. Cancer Lett, 2022, 527: 10-23. doi:10.1016/j.canlet.2021.12.005
[1] WU Min, LI Zhengyang, MENG Jie, YE Huiping. Molecular mechanisms of programmed cell death and its role in nasopharyngeal carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2025, 39(2): 152-157.
[2] ZHANG Maohua, WEI Rifu, ZHU Zhongshou, LIU Ping, GAO Shang, LI Huifeng. Effect of LncRNA PCAT-1 on the biological behaviour and chemosensitivity of nasopharyngeal carcinoma cells [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2025, 39(1): 68-76.
[3] NI Rongsheng, SHEN Xiaohui, GAO Xia. Correlation analysis of gene expression profile of matrix metalloproteinases and their inhibitors in laryngeal squamous cell carcinoma and clinicopathological features [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(4): 55-61.
[4] ZHANG Jingyi, DONG Xiangyi, MU Yakui, SONG Xicheng. Research progress on pyroptosis in otorhinolaryngology diseases [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(4): 140-148.
[5] WU Bin, ZHOU Jingchun. Single cell sequencing analysis of RPN2 expression pattern in laryngeal squamous cell carcinoma cells [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(3): 1-11.
[6] YANG Kaiyan, TANG Fengzhu, QIN Qicai, LI Xuxiang, FENG Dayi, NONG Fengjing, YANG Qiuyun. Expression of abnormal spindle-like microcephaly associated protein in nasopharyngeal carcinoma and its clinical significance [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(3): 18-25.
[7] WANG Kaijian, CHEN Xuesheng, WANG Wei. A meta-analysis of the correlation between platelet-lymphocyte ratio and prognosis of laryngeal squamous cell carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(3): 67-73.
[8] XIE Yulin, LEI Dapeng. Advances in the pathological study of artificial intelligence in the lymph node metastasis of head and neck squamous cell carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(3): 124-129.
[9] DAI Honglei, WANG Qiuyang, MA Wenxue, GUAN Bin, QI Jingjing. To analyze the mortality trend of nasopharyngeal carcinoma based on Joinpoint regression and an age-period-cohort model [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(1): 27-31.
[10] SONG Fei, SONG Hao, LI Yumei, MOU Yakui, SONG Xicheng. Immunomodulatory roles of tumor-derived exosomes in the microenvironment of head and neck squamous cell carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(1): 92-100.
[11] ZHANG Yonghong, ZHANG Hui, WANG Caihua, YANG Xinxin, WU Yungang, ZHAO Yufeng, PANG Taizhong, LI Xiaoyu. Construction of an immune-associated gene prognostic model and screening of targeted molecular drugs for laryngeal squamous cell carcinoma based on the TCGA database [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(5): 54-62.
[12] ZHOU Yijing, ZOU Jianyin, YI Hongliang, WU Hongmin. Expression of TGFBI in head and neck squamous cell carcinoma and its clinical significance [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(5): 85-95.
[13] TU Qiaoling, LI Yufeng, PENG Jun. Advances in anti-PD-L1/PD-1 therapy and non-coding RNA regulation in nasopharyngeal carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(5): 135-141.
[14] YANG Yingling, GOU Haocheng, FENG Jun. Review of pyroptosis molecular mechanism and applications in head and neck squamous cell carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(4): 160-165.
[15] SUO Anqi, YANG Xinxin. Research progress on the relationship between mitochondrial autophagy and squamous cell carcinoma of the head and neck [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(3): 111-117.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!