Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2025, Vol. 39 ›› Issue (3): 153-161.doi: 10.6040/j.issn.1673-3770.0.2024.240
• Review • Previous Articles
YANG Ming1,2, LIU Xuexia3, ZHANG Hua2
CLC Number:
| [1] Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. doi:10.3322/caac.21660 [2] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018[J]. CA A Cancer J Clinicians, 2018, 68(1): 7-30. doi:10.3322/caac.21442 [3] Johnson DE, Burtness B, Leemans CR, et al. Head and neck squamous cell carcinoma[J]. Nat Rev Dis Primers, 2020, 6(1): 92. doi:10.1038/s41572-020-00224-3 [4] Garneau JC, Bakst RL, Miles BA. Hypopharyngeal cancer: a state of the art review[J]. Oral Oncol, 2018, 86: 244-250. doi: 10.1016/j.oraloncology.2018.09.025 [5] Galloway TJ, Ridge JA. Management of squamous cancer metastatic to cervical nodes with an unknown primary site[J]. J Clin Oncol, 2015, 33(29): 3328-3337. doi:10.1200/JCO.2015.61.0063 [6] Sun T, Wu RY, Ming L. The role of m6A RNA methylation in cancer[J]. Biomed Pharmacother, 2019, 112: 108613. doi:10.1016/j.biopha.2019.108613 [7] Fu Y, Dominissini D, Rechavi G, et al. Gene expression regulation mediated through reversible m6 A RNA methylation[J]. Nat Rev Genet, 2014, 15(5): 293-306. doi:10.1038/nrg3724 [8] Hu YY, Wang SM, Liu J, et al. New sights in cancer: Component and function of N6-methyladenosine modification[J]. Biomed Pharmacother, 2020, 122: 109694. doi:10.1016/j.biopha.2019.109694 [9] Chen B, Li Y, Song RF, et al. Functions of RNA N6-methyladenosine modification in cancer progression[J]. Mol Biol Rep, 2019, 46(2): 2567-2575. doi:10.1007/s11033-019-04655-4 [10] Tuncel G, Kalkan R. Importance of m N6-methyladenosine(m6A)RNA modification in cancer[J]. Med Oncol, 2019, 36(4): 36. doi:10.1007/s12032-019-1260-6 [11] 周子寒, 周先果, 陈佩琴, 等. m6A结合蛋白IGF2BP1在肝细胞癌中的基因调控网络分析[J]. 中国癌症防治杂志, 2020, 12(6): 675-680. doi:10.3969/j.issn.1674-5671.2020.06.14 ZHOU Zihan, ZHOU Xianguo, CHEN Peiqin, et al. Gene regulatory network analysis of m6A reader IGF2BP1 in hepatocellular carcinoma[J]. Chinese Journal of Oncology Prevention and Treatment, 2020, 12(6): 675-680. doi:10.3969/j.issn.1674-5671.2020.06.14 [12] Jiang XL, Liu BY, Nie Z, et al. The role of m6A modification in the biological functions and diseases[J]. Signal Transduct Target Ther, 2021, 6(1): 74. doi:10.1038/s41392-020-00450-x [13] Huang XW, Zhang H, Guo XR, et al. Insulin-like growth factor 2 mRNA-binding protein 1(IGF2BP1)in cancer[J]. J Hematol Oncol, 2018, 11(1): 88. doi:10.1186/s13045-018-0628-y [14] Du QY, Zhu ZM, Pei DS. The biological function of IGF2-BPs and the irrolein tumor igenesis[J]. Investig New Drugs, 2021, 39(6): 1682-1693. doi:10.1007/s10637-021-01148-9 [15] Huang HL, Weng HY, Sun WJ, et al. Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation[J]. Nat Cell Biol, 2018, 20(3): 285-295. doi:10.1038/s41556-018-0045-z [16] Wächter K, Köhn M, Stöhr N, et al. Subcellular localization and RNP formation of IGF2BPs(IGF2 mRNA-binding proteins)is modulated by distinct RNA-binding domains[J]. Biol Chem, 2013, 394(8): 1077-1090. doi:10.1515/hsz-2013-0111 [17] Dai LR, Liang WL, Shi ZM, et al. Systematic characterization and biological functions of non-coding RNAs in glioblastoma[J]. Cell Prolif, 2023, 56(3): e13375. doi:10.1111/cpr.13375 [18] Liu HT, Zou YX, Zhu WJ, et al. lncRNA THAP7-AS1, transcriptionally activated by SP1 and post-transcriptionally stabilized by METTL3-mediated m6A modification, exerts oncogenic properties by improving CUL4B entry into the nucleus[J]. Cell Death Differ, 2022, 29(3): 627-641. doi:10.1038/s41418-021-00879-9 [19] Liu Y, Guo Q, Yang H, et al. Allosteric regulation of IGF2BP1 as a novel strategy for the activation of tumor immune microenvironment[J]. ACS Cent Sci, 2022, 8(8): 1102-1115. doi:10.1021/acscentsci.2c00107 [20] Roundtree IA, Evans ME, Pan T, et al. Dynamic RNA modifications in gene expression regulation[J]. Cell, 2017, 169(7): 1187-1200. doi:10.1016/j.cell.2017.05.045 [21] Han DL, Liu J, Chen CY, et al. Anti-tumour immunity controlled through mRNA m6A methylation and YTHDF1 in dendritic cells[J]. Nature, 2019, 566(7743): 270-274. doi:10.1038/s41586-019-0916-x [22] Bell JL, Turlapati R, Liu T, et al. IGF2BP1 harbors prognostic significance by gene gain and diverse expression in neuroblastoma[J]. J Clin Oncol, 2015, 33(11): 1285-1293. doi:10.1200/JCO.2014.55.9880 [23] Gu TW, Horová E, Möllsten A, et al. IGF2BP2 and IGF2 genetic effects in diabetes and diabetic nephropathy[J]. J Diabetes Complications, 2012, 26(5): 393-398. doi:10.1016/j.jdiacomp.2012.05.012 [24] Mancarella C, Scotlandi K. IGF2BP3 from physiology to cancer: novel discoveries, unsolved issues, and future perspectives[J]. Front Cell Dev Biol, 2019, 7: 363. doi:10.3389/fcell.2019.00363 [25] Farina KL, Huttelmaier S, Musunuru K, et al. Two ZBP1 KH domains facilitate beta-actin mRNA localization, granule formation, and cytoskeletal attachment[J]. J Cell Biol, 2003, 160(1): 77-87. doi:10.1083/jcb.200206003 [26] Nielsen J, Adolph SK, Rajpert-De Meyts E, et al. Nuclear transit of human zipcode-binding protein IMP1[J]. Biochem J, 2003, 376(Pt 2): 383-391. doi:10.1042/BJ20030943 [27] Nielsen J, Kristensen MA, Willemoës M, et al. Sequential dimerization of human zipcode-binding protein IMP1 on RNA: a cooperative mechanism providing RNP stability[J]. Nucleic Acids Res, 2004, 32(14): 4368-4376. doi:10.1093/nar/gkh754 [28] Tang H, Zhao JJ, Liu JP. Comprehensive analysis of the expression of the IGF2BPs gene family in head and neck squamous cell carcinoma: association with prognostic value and tumor immunity[J]. Heliyon, 2023, 9(10): e20659. doi:10.1016/j.heliyon.2023.e20659 [29] Lin SH, Lin CW, Lu JW, et al. Cytoplasmic IGF2BP2 protein expression in human patients with oral squamous cell carcinoma: prognostic and clinical implications[J]. Int J Med Sci, 2022, 19(7): 1198-1204. doi:10.7150/ijms.74751 [30] Hwang YS, Ahn SY, Moon S, et al. Insulin-like growth factor-II mRNA binding protein-3 and podoplanin expression are associated with bone invasion and prognosis in oral squamous cell carcinoma[J]. Arch Oral Biol, 2016, 69: 25-32. doi:10.1016/j.archoralbio.2016.05.008 [31] Gu YM, Niu SX, Wang Y, et al. DMDRMR-Mediated regulation of m6A-Modified CDK4 by m6A reader IGF2BP3 drives ccRCC progression[J]. Cancer Res, 2021, 81(4): 923-934. doi:10.1158/0008-5472.CAN-20-1619 [32] Xu WH, Lai YN, Pan YQ, et al. m6A RNA methylation-mediated NDUFA4 promotes cell proliferation and metabolism in gastric cancer[J]. Cell Death Dis, 2022, 13(8): 715. doi:10.1038/s41419-022-05132-w [33] Liu Y, Guo Q, Yang H, et al. Allosteric regulation of IGF2BP1 as a novel strategy for the activation of tumor immune microenvironment[J]. ACS Cent Sci, 2022, 8(8): 1102-1115. doi:10.1021/acscentsci.2c00107 [34] Du MY, Peng Y, Li Y, et al. MYC-activated RNA N6-methyladenosine reader IGF2BP3 promotes cell proliferation and metastasis in nasopharyngeal carcinoma[J]. Cell Death Discov, 2022, 8(1): 53. doi:10.1038/s41420-022-00844-6 [35] Leng F, Miu YY, Zhang Y, et al. A micro-peptide encoded by HOXB-AS3 promotes the proliferation and viability of oral squamous cell carcinoma cell lines by directly binding with IGF2BP2 to stabilize c-Myc[J]. Oncol Lett, 2021, 22(4): 697. doi:10.3892/ol.2021.12958 [36] Ye M, Dong S, Hou HT, et al. Oncogenic role of long noncoding RNAMALAT1 in thyroid cancer progression through regulation of the miR-204/IGF2BP2/m6A-MYC signaling[J]. Mol Ther Nucleic Acids, 2021, 23: 1-12. doi:10.1016/j.omtn.2020.09.023 [37] Bugter JM, Fenderico N, Maurice MM. Mutations and mechanisms of WNT pathway tumour suppressors in cancer[J]. Nat Rev Cancer, 2021, 21(1): 5-21. doi:10.1038/s41568-020-00307-z [38] Tong SQ, Wang XY, Guo XR, et al. Knockdown of lncRNA IGF2BP2-AS1 inhibits proliferation and migration of oral squamous cell carcinoma cells via the Wnt/β-catenin pathway[J]. J Oral Pathol Med, 2022, 51(3): 272-280. doi:10.1111/jop.13248 [39] Zheng ZQ, Li ZX, Guan JL, et al. Long noncoding RNA TINCR-mediated regulation of acetyl-CoA metabolism promotes nasopharyngeal carcinoma progression and chemoresistance[J]. Cancer Res, 2020, 80(23): 5174-5188. doi:10.1158/0008-5472.CAN-19-3626 [40] Li JL, Cao H, Yang JW, et al. CircCDK1 blocking IGF2BP2-mediated m6A modification of CPPED1 promotes laryngeal squamous cell carcinoma metastasis via the PI3K/AKT signal pathway[J]. Gene, 2023, 884: 147686. doi:10.1016/j.gene.2023.147686 [41] Xu Y, Guo ZB, Peng HW, et al. IGF2BP3 promotes cell metastasis and is associated with poor patient survival in nasopharyngeal carcinoma[J]. J Cell Mol Med, 2022, 26(2): 410-421. doi:10.1111/jcmm.17093 [42] Lin CW, Yang WE, Su CW, et al. IGF2BP2 promotes cell invasion and epithelial-mesenchymal transition through Src-mediated upregulation of EREG in oral cancer[J]. Int J Biol Sci, 2024, 20(3): 818-830. doi:10.7150/ijbs.91786 [43] Yang RT, Wan JH, Ma LW, et al. TMEM44-AS1 promotes esophageal squamous cell carcinoma progression by regulating the IGF2BP2-GPX4 axis in modulating ferroptosis[J]. Cell Death Discov, 2023, 9(1): 431. doi:10.1038/s41420-023-01727-0 [44] Liang JF, Cai HS, Hou C, et al. METTL14 inhibits malignant progression of oral squamous cell carcinoma by targeting the autophagy-related gene RB1CC1 in an m6A-IGF2BP2-dependent manner[J]. Clin Sci, 2023, 137(17): 1373-1389. doi:10.1042/CS20230219 [45] Xu K, Dai XJ, Wu JK, et al. N6-methyladenosine(m6A)reader IGF2BP2 stabilizes HK2 stability to accelerate the Warburg effect of oral squamous cell carcinoma progression[J]. J Cancer Res Clin Oncol, 2022, 148(12): 3375-3384. doi:10.1007/s00432-022-04093-z [46] Huang JP, Sun W, Wang ZH, et al. FTO suppresses glycolysis and growth of papillary thyroid cancer via decreasing stability of APOE mRNA in an N6-methyladenosine-dependent manner[J]. J Exp Clin Cancer Res, 2022, 41(1): 42. doi:10.1186/s13046-022-02254-z [47] Yang XD, Liu JS. Targeting PD-L1(Programmed death-ligand 1)and inhibiting the expression of IGF2BP2(Insulin-like growth factor 2 mRNA-binding protein 2)affect the proliferation and apoptosis of hypopharyngeal carcinoma cells[J]. Bioengineered, 2021, 12(1): 7755-7764. doi:10.1080/21655979.2021.1983278 [48] Chua MLK, Wee JTS, Hui EP, et al. Nasopharyngeal carcinoma[J]. Lancet, 2016, 387(10022): 1012-1024. doi:10.1016/S0140-6736(15)00055-0 [49] Zhang Y, Chen L, Hu GQ, et al. Gemcitabine and cisplatin induction chemotherapy in nasopharyngeal carcinoma[J]. N Engl J Med, 2019, 381(12): 1124-1135. doi:10.1056/NEJMoa1905287 [50] Wang SS, Lv Y, Xu XC, et al. Triptonide inhibits human nasopharyngeal carcinoma cell growth via disrupting Lnc-RNA THOR-IGF2BP1 signaling[J]. Cancer Lett, 2019, 443: 13-24. doi:10.1016/j.canlet.2018.11.028 [51] Lu SS, Yu ZZ, Xiao ZQ, et al. Gene signatures and prognostic values of m6A genes in nasopharyngeal carcinoma[J]. Front Oncol, 2020, 10: 875. doi:10.3389/fonc.2020.00875 [52] Guo DQ, Liu F, Zhang L, et al. Long non-coding RNA AWPPH enhances malignant phenotypes in nasopharyngeal carcinoma via silencing PTEN through interacting with LSD1 and EZH2[J]. Biochem Cell Biol, 2021, 99(2): 195-202. doi:10.1139/bcb-2019-0497 [53] Li ZX, Zheng ZQ, Yang PY, et al. WTAP-mediated m6A modification of lncRNA DIAPH1-AS1 enhances its stability to facilitate nasopharyngeal carcinoma growth and metastasis[J]. Cell Death Differ, 2022, 29(6): 1137-1151. doi:10.1038/s41418-021-00905-w [54] Chen BY, Huang RD, Xia TL, et al. The m6A reader IGF2BP3 preserves NOTCH3 mRNA stability to sustain Notch3 signaling and promote tumor metastasis in nasopharyngeal carcinoma[J]. Oncogene, 2023, 42(48): 3564-3574. doi:10.1038/s41388-023-02865-6 [55] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. doi:10.3322/caac.21492 [56] Bhattacharya A, Roy R, Snijders AM, et al. Two distinct routes to oral cancer differing in genome instability and risk for cervical node metastasis[J]. Clin Cancer Res, 2011, 17(22): 7024-7034. doi:10.1158/1078-0432.CCR-11-1944 [57] Wang XP, Xu HY, Zhou Z, et al. IGF2BP2 maybe a novel prognostic biomarker in oral squamous cell carcinoma[J]. Biosci Rep, 2022, 42(2): BSR20212119. doi:10.1042/BSR20212119 [58] Qiu LH, Zheng LL, Gan CW, et al. circBICD2 targets miR-149-5p/IGF2BP1 axis to regulate oral squamous cell carcinoma progression[J]. J Oral Pathol Med, 2021, 50(7): 668-680. doi:10.1111/jop.13156 [59] Yang HJ, Fu GL, Liu FN, et al. LncRNA THOR promotes tongue squamous cell carcinomas by stabilizing IGF2BP1 downstream targets[J]. Biochimie, 2019, 165: 9-18. doi:10.1016/j.biochi.2019.06.012 [60] Xu L, Li QX, Wang YF, et al. m6A methyltransferase METTL3 promotes oral squamous cell carcinoma progression through enhancement of IGF2BP2-mediated SLC7A11 mRNA stability[J]. Am J Cancer Res, 2021, 11(11): 5282-5298 [61] Liu JP, Jiang X, Zou AL, et al. circIGHG-induced epithelial-to-mesenchymal transition promotes oral squamous cell carcinoma progression via miR-142-5p/IGF2BP3 signaling[J]. Cancer Res, 2021, 81(2): 344-355. doi:10.1158/0008-5472.CAN-20-0554 [62] Zhang XL, Jung IH, Hwang YS. EGF enhances low-invasive cancer cell invasion by promoting IMP-3 expression[J]. Tumour Biol, 2016, 37(2): 2555-2563. doi:10.1007/s13277-015-4099-2 [63] Nocini R, Molteni G, Mattiuzzi C, et al. Updates on larynx cancer epidemiology[J]. Chin J Cancer Res, 2020, 32(1): 18-25. doi:10.21147/j.issn.1000-9604.2020.01.03 [64] Badwal JS. Total laryngectomy for treatment of T4 laryngeal cancer: trends and survival outcomes[J]. Pol Przegl Chir, 2018, 91(3): 30-37. doi:10.5604/01.3001.0012.2307 [65] Tang XJ, Tang QL, Li SS, et al. IGF2BP2 acts as a m6A modification regulator in laryngeal squamous cell carcinoma through facilitating CDK6 mRNA stabilization[J]. Cell Death Discov, 2023, 9(1): 371. doi:10.1038/s41420-023-01669-7 [66] Li JL, Cao H, Yang JW, et al. IGF2BP2-m6A-circMMP9 axis recruits ETS1 to promote TRIM59 transcription in laryngeal squamous cell carcinoma[J]. Sci Rep, 2024, 14(1): 3014. doi:10.1038/s41598-024-53422-4 [67] Mar zi c D, Mariji c B, Braut T, et al. IMP3 protein overexpression is linked to unfavorable outcome in laryngeal squamous cell carcinoma[J]. Cancers, 2021, 13(17): 4306. doi:10.3390/cancers13174306 [68] Yang LK, Yan BR, Qu LM, et al. IGF2BP3 regulates TMA7-mediated autophagy and cisplatin resistance in laryngeal cancer via m6A RNA methylation[J]. Int J Biol Sci, 2023, 19(5): 1382-1400. doi:10.7150/ijbs.80921 [69] Wang X, Tian LL, Li YS, et al. RBM15 facilitates laryngeal squamous cell carcinoma progression by regulating TMBIM6 stability through IGF2BP3 dependent[J]. J Exp Clin Cancer Res, 2021, 40(1): 80. doi:10.1186/s13046-021-01871-4 [70] An CM, Sun Y, Miao SS, et al. Retropharyngeal lymph node metastasis diagnosed by magnetic resonance imaging in hypopharyngeal carcinoma: a retrospective analysis from Chinese multi-center data[J]. Front Oncol, 2021, 11: 649540. doi:10.3389/fonc.2021.649540 [71] Yang T, Hui RT, Nouws J, et al. Untargeted metabolomics analysis of esophageal squamous cell cancer progression[J]. J Transl Med, 2022, 20(1): 127. doi:10.1186/s12967-022-03311-z [72] Yan AT, Wang CZ, Zheng LF, et al. microRNA-454-3p inhibits cell proliferation and invasion in esophageal cancer by targeting insulin-like growth factor 2 mRNA-binding protein 1[J]. Oncol Lett, 2020, 20(6): 359. doi:10.3892/ol.2020.12223 [73] Fang XY, Sun JJ, Chen SY, et al. IGF2BP1/UHRF2 axis mediated by miR-98-5p to promote the proliferation of and inhibit the apoptosis of esophageal squamous cell carcinoma[J]. Ann Clin Lab Sci, 2021, 51(3): 329-338 [74] Zhao YH, Li Y, Zhu R, et al. RPS15 interacted with IGF2BP1 to promote esophageal squamous cell carcinoma development via recognizing m6A modification[J]. Signal Transduct Target Ther, 2023, 8(1): 224. doi:10.1038/s41392-023-01428-1 [75] Wang JJ, Chen DX, Zhang Y, et al. Elevated expression of the RNA-binding protein IGF2BP1 enhances the mRNA stability of INHBA to promote the invasion and migration of esophageal squamous cancer cells[J]. Exp Hematol Oncol, 2023, 12(1): 75. doi:10.1186/s40164-023-00429-8 [76] Lu FY, Chen WC, Jiang TW, et al. Expression profile, clinical significance and biological functions of IGF2BP2 in esophageal squamous cell carcinoma[J]. Exp Ther Med, 2022, 23(4): 252. doi:10.3892/etm.2022.11177 [77] Wang C, Zhou MX, Zhu PY, et al. IGF2BP2-induced circRUNX1 facilitates the growth and metastasis of esophageal squamous cell carcinoma through miR-449b-5p/FOXP3 axis[J]. J Exp Clin Cancer Res, 2022, 41(1): 347. doi:10.1186/s13046-022-02550-8 [78] Xiao YH, Tang JM, Yang DS, et al. Long noncoding RNA LIPH-4 promotes esophageal squamous cell carcinoma progression by regulating the miR-216b/IGF2BP2 axis[J]. Biomark Res, 2022, 10(1): 60. doi:10.1186/s40364-022-00408-x [79] Wu XD, Fan YH, Liu YP, et al. Long non-coding RNA CCAT2 promotes the development of esophageal squamous cell carcinoma by inhibiting miR-200b to upregulate the IGF2BP2/TK1 axis[J]. Front Oncol, 2021, 11: 680642. doi:10.3389/fonc.2021.680642 [80] Zhao R, Li T, Zhao X, et al. The m6A reader IGF2BP2 promotes the progression of esophageal squamous cell carcinoma cells by increasing the stability of OCT4 mRNA[J]. Biochem Cell Biol, 2024, 102(2): 169-178. doi:10.1139/bcb-2023-0067 [81] Huang GW, Chen QQ, Ma CC, et al. linc01305 promotes metastasis and proliferation of esophageal squamous cell carcinoma through interacting with IGF2BP2 and IGF2BP3 to stabilize HTR3A mRNA[J]. Int J Biochem Cell Biol, 2021, 136: 106015. doi:10.1016/j.biocel.2021.106015 [82] Qian LX, Cao X, Du MY, et al. KIF18A knockdown reduces proliferation, migration, invasion and enhances radiosensitivity of esophageal cancer[J]. Biochem Biophys Res Commun, 2021, 557: 192-198. doi:10.1016/j.bbrc.2021.04.020 [83] Feng YD, Lin YB, Jiang ZY, et al. Insulin-like growth factor-2 mRNA-binding protein 3 promotes cell migration, invasion, and epithelial-mesenchymal transition of esophageal squamous cell carcinoma cells by targeting zinc finger E-box-binding homeobox 1 mRNA[J]. Mol Carcinog, 2023, 62(4): 503-516. doi:10.1002/mc.23502 [84] Kim J, Gosnell JE, Roman SA. Geographic influences in the global rise of thyroid cancer[J]. Nat Rev Endocrinol, 2020, 16(1): 17-29. doi:10.1038/s41574-019-0263-x [85] Dong LP, Geng ZS, Liu Z, et al. IGF2BP2 knockdown suppresses thyroid cancer progression by reducing the expression of long non-coding RNA HAGLR[J]. Pathol Res Pract, 2021, 225: 153550. doi:10.1016/j.prp.2021.153550 [86] Panebianco F, Kelly LM, Liu PY, et al. THADA fusion is a mechanism of IGF2BP3 activation and IGF1R signaling in thyroid cancer[J]. Proc Natl Acad Sci USA, 2017, 114(9): 2307-2312. doi:10.1073/pnas.1614265114 [87] Wang WL, Ding Y, Zhao YZ, et al. m6A reader IGF2BP2 promotes lymphatic metastasis by stabilizing DPP4 in papillary thyroid carcinoma[J]. Cancer Gene Ther, 2024, 31(2): 285-299. doi:10.1038/s41417-023-00702-2 [88] Molinaro E, Romei C, Biagini A, et al. Anaplastic thyroid carcinoma: from clinicopathology to genetics and advanced therapies[J]. Nat Rev Endocrinol, 2017, 13(11): 644-660. doi:10.1038/nrendo.2017.76 [89] Haase J, Misiak D, Bauer M, et al. IGF2BP1 is the first positive marker for anaplastic thyroid carcinoma diagnosis[J]. Mod Pathol, 2021, 34(1): 32-41. doi:10.1038/s41379-020-0630-0 [90] Sa R, Guo ML, Liu DY, et al. AhR antagonist promotes differentiation of papillary thyroid cancer via regulating circSH2B3/miR-4640-5P/IGF2BP2 axis[J]. Front Pharmacol, 2021, 12: 795386. doi:10.3389/fphar.2021.795386 [91] Sa R, Liang R, Qiu X, et al. Targeting IGF2BP2 promotes differentiation of radioiodine refractory papillary thyroid cancer via destabilizing RUNX2 mRNA[J]. Cancers, 2022, 14(5): 1268. doi:10.3390/cancers14051268 [92] Sa R, Liang R, Qiu X, et al. IGF2BP2-dependent activation of ERBB2 signaling contributes to acquired resistance to tyrosine kinase inhibitor in differentiation therapy of radioiodine-refractory papillary thyroid cancer[J]. Cancer Lett, 2022, 527: 10-23. doi:10.1016/j.canlet.2021.12.005 |
| [1] | WU Min, LI Zhengyang, MENG Jie, YE Huiping. Molecular mechanisms of programmed cell death and its role in nasopharyngeal carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2025, 39(2): 152-157. |
| [2] | ZHANG Maohua, WEI Rifu, ZHU Zhongshou, LIU Ping, GAO Shang, LI Huifeng. Effect of LncRNA PCAT-1 on the biological behaviour and chemosensitivity of nasopharyngeal carcinoma cells [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2025, 39(1): 68-76. |
| [3] | NI Rongsheng, SHEN Xiaohui, GAO Xia. Correlation analysis of gene expression profile of matrix metalloproteinases and their inhibitors in laryngeal squamous cell carcinoma and clinicopathological features [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(4): 55-61. |
| [4] | ZHANG Jingyi, DONG Xiangyi, MU Yakui, SONG Xicheng. Research progress on pyroptosis in otorhinolaryngology diseases [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(4): 140-148. |
| [5] | WU Bin, ZHOU Jingchun. Single cell sequencing analysis of RPN2 expression pattern in laryngeal squamous cell carcinoma cells [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(3): 1-11. |
| [6] | YANG Kaiyan, TANG Fengzhu, QIN Qicai, LI Xuxiang, FENG Dayi, NONG Fengjing, YANG Qiuyun. Expression of abnormal spindle-like microcephaly associated protein in nasopharyngeal carcinoma and its clinical significance [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(3): 18-25. |
| [7] | WANG Kaijian, CHEN Xuesheng, WANG Wei. A meta-analysis of the correlation between platelet-lymphocyte ratio and prognosis of laryngeal squamous cell carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(3): 67-73. |
| [8] | XIE Yulin, LEI Dapeng. Advances in the pathological study of artificial intelligence in the lymph node metastasis of head and neck squamous cell carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(3): 124-129. |
| [9] | DAI Honglei, WANG Qiuyang, MA Wenxue, GUAN Bin, QI Jingjing. To analyze the mortality trend of nasopharyngeal carcinoma based on Joinpoint regression and an age-period-cohort model [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(1): 27-31. |
| [10] | SONG Fei, SONG Hao, LI Yumei, MOU Yakui, SONG Xicheng. Immunomodulatory roles of tumor-derived exosomes in the microenvironment of head and neck squamous cell carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(1): 92-100. |
| [11] | ZHANG Yonghong, ZHANG Hui, WANG Caihua, YANG Xinxin, WU Yungang, ZHAO Yufeng, PANG Taizhong, LI Xiaoyu. Construction of an immune-associated gene prognostic model and screening of targeted molecular drugs for laryngeal squamous cell carcinoma based on the TCGA database [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(5): 54-62. |
| [12] | ZHOU Yijing, ZOU Jianyin, YI Hongliang, WU Hongmin. Expression of TGFBI in head and neck squamous cell carcinoma and its clinical significance [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(5): 85-95. |
| [13] | TU Qiaoling, LI Yufeng, PENG Jun. Advances in anti-PD-L1/PD-1 therapy and non-coding RNA regulation in nasopharyngeal carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(5): 135-141. |
| [14] | YANG Yingling, GOU Haocheng, FENG Jun. Review of pyroptosis molecular mechanism and applications in head and neck squamous cell carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(4): 160-165. |
| [15] | SUO Anqi, YANG Xinxin. Research progress on the relationship between mitochondrial autophagy and squamous cell carcinoma of the head and neck [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(3): 111-117. |
|
||