Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2025, Vol. 39 ›› Issue (5): 161-168.doi: 10.6040/j.issn.1673-3770.0.2023.425

• Review • Previous Articles    

Recent advancements in the research on ferroptosis and age-related cataracts

WANG Sheng, HUANG Xudong   

  1. School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China
  • Published:2025-09-19

Abstract: Ferroptosis is a form of iron-dependent cell death characterized by intracellular reactive oxygen species and lipid peroxide accumulation. In recent years, preventing the occurrence and development of related diseases by regulating cellular ferroptosis has become a focal point in pathogenic research and treatment. As the leading cause of blindness globally, cataracts, particularly age-related cataracts(ARC), can be influenced by inducers and inhibitors of ferroptosis. This suggests that ferroptosis is involved in ARC development; therefore, studying the functional changes and specific molecular mechanisms of ferroptosis in ARC has significant research value. This review discusses the latest progress in the study of ferroptosis and its findings in relation to ARC, thus providing a reference for further understanding its pathogenesis and proposing novel targets for the treatment of ARC.

Key words: Ferroptosis, Age-related cataract, Lens epithelial cells, Free radicals, Ferroptosis inhibitors, Ferroptosis inducers

CLC Number: 

  • R776.1
[1] 黄琴, 夏中元, 雷少青, 等. 新近细胞死亡形式: 铁死亡发生的机制及其潜在信号通路的研究进展[J]. 医学综述, 2020, 26(16): 3171-3177. doi:10.3969/j.issn.1006-2084.2020.16.010 HUANG Qin, XIA Zhongyuan, LEI Shaoqing, et al. Research progress in mechanism of a newly discovered form of cell death—ferroptosis and its potential signaling pathway[J]. Medical Recapitulate, 2020, 26(16): 3171-3177. doi:10.3969/j.issn.1006-2084.2020.16.010
[2] Chen X, Li JB, Kang R, et al. Ferroptosis: machinery and regulation[J]. Autophagy, 2021, 17(9): 2054-2081. doi:10.1080/15548627.2020.1810918
[3] Lee B, Afshari NA, Shaw PX. Oxidative stress and antioxidants in cataract development[J]. Curr Opin Ophthalmol. 2024, 35(1): 57-63. doi:10.1097/ICU.0000000000001009
[4] Wang LD, Liu JX, Ma DY, et al. Glycine recalibrates iron homeostasis of lens epithelial cells by blocking lysosome-dependent ferritin degradation[J]. Free Radic Biol Med, 2024, 210: 258-270. doi:10.1016/j.freeradbiomed.2023.11.020
[5] Wei ZB, Hao CL, Huangfu JR, et al. Aging lens epithelium is susceptible to ferroptosis[J]. Free Radic Biol Med, 2021, 167: 94-108. doi:10.1016/j.freeradbiomed.2021.02.010
[6] Mi Y, Wei CQ, Sun LY, et al. Melatonin inhibits ferroptosis and delays age-related cataract by regulating SIRT6/p-Nrf2/GPX4 and SIRT6/NCOA4/FTH1 pathways[J]. Biomed Pharmacother, 2023, 157: 114048. doi:10.1016/j.biopha.2022.114048
[7] Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072. doi:10.1016/j.cell.2012.03.042
[8] Hassan W, Noreen H, Khalil S, et al. Ethanolic extract of Nigella sativa protects Fe(II)induced lipid peroxidation in rat's brain, kidney and liver homogenates[J]. Pak J Pharm Sci. 2016, 29(1): 231-237.
[9] Bai YT, Chang R, Wang H, et al. ENPP2 protects cardiomyocytes from erastin-induced ferroptosis[J]. Biochem Biophys Res Commun, 2018, 499(1): 44-51. doi:10.1016/j.bbrc.2018.03.113
[10] Lin CH, Lin PP, Lin CY, et al. Decreased mRNA expression for the two subunits of system xc(-), SLC3A2 and SLC7A11, in WBC in patients with schizophrenia: evidence in support of the hypo-glutamatergic hypothesis of schizophrenia[J]. J Psychiatr Res, 2016, 72: 58-63. doi:10.1016/j.jpsychires.2015.10.007
[11] Li J, Cao F, Yin HL, et al. Ferroptosis: past, present and future[J]. Cell Death Dis, 2020, 11(2): 88. doi:10.1038/s41419-020-2298-2
[12] Jones DP, Sies H. The redox code[J]. Antioxid Redox Signal, 2015, 23(9): 734-746. doi:10.1089/ars.2015.6247
[13] Jiang L, Kon N, Li TY, et al. Ferroptosis as a p53-mediated activity during tumour suppression[J]. Nature, 2015, 520(7545): 57-62. doi:10.1038/nature14344
[14] Jiang XJ, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease[J]. Nat Rev Mol Cell Biol, 2021, 22(4): 266-282. doi:10.1038/s41580-020-00324-8
[15] Distéfano AM, Martin MV, Córdoba JP, et al. Heat stress induces ferroptosis-like cell death in plants[J]. J Cell Biol, 2017, 216(2): 463-476. doi:10.1083/jcb.201605110
[16] Chen X, Kang R, Kroemer G, et al. Broadening horizons: the role of ferroptosis in cancer[J]. Nat Rev Clin Oncol, 2021, 18(5): 280-296. doi:10.1038/s41571-020-00462-0
[17] Yang WS, Stockwell BR. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells[J]. Chem Biol, 2008, 15(3): 234-245. doi:10.1016/j.chembiol.2008.02.010
[18] Conrad M, Pratt DA. The chemical basis of ferroptosis[J]. Nat Chem Biol, 2019, 15(12): 1137-1147. doi:10.1038/s41589-019-0408-1
[19] Zhang DL, Ghosh MC, Rouault TA. The physiological functions of iron regulatory proteins in iron homeostasis-an update[J]. Front Pharmacol, 2014, 5: 124. doi:10.3389/fphar.2014.00124
[20] Hou W, Xie YC, Song XX, et al. Autophagy promotes ferroptosis by degradation of ferritin[J]. Autophagy, 2016, 12(8): 1425-1428. doi:10.1080/15548627.2016.1187366
[21] Gao MH, Monian P, Pan QH, et al. Ferroptosis is an autophagic cell death process[J]. Cell Res, 2016, 26(9): 1021-1032. doi:10.1038/cr.2016.95
[22] Gao MH, Monian P, Quadri N, et al. Glutaminolysis and transferrin regulate ferroptosis[J]. Mol Cell, 2015, 59(2): 298-308. doi:10.1016/j.molcel.2015.06.011
[23] Tuo QZ, Lei P, Jackman KA, et al. Tau-mediated iron export prevents ferroptotic damage after ischemic stroke[J]. Mol Psychiatry, 2017, 22(11): 1520-1530. doi:10.1038/mp.2017.171
[24] Brown CW, Amante JJ, Chhoy P, et al. Prominin2 drives ferroptosis resistance by stimulating iron export[J]. Dev Cell, 2019, 51(5): 575-586.e4. doi:10.1016/j.devcel.2019.10.007
[25] Kwon MY, Park E, Lee SJ, et al. Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death[J]. Oncotarget, 2015, 6(27): 24393-24403. doi:10.18632/oncotarget.5162
[26] Sun XF, Ou ZH, Chen RC, et al. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells[J]. Hepatology, 2016, 63(1): 173-184. doi:10.1002/hep.28251
[27] Torti SV, Torti FM. Iron and cancer: more ore to be mined[J]. Nat Rev Cancer, 2013, 13(5): 342-355. doi:10.1038/nrc3495
[28] 孙汐文, 骆春雨, 李志鹏, 等. 铁死亡在呼吸道炎症性疾病中的作用及研究进展[J]. 山东大学耳鼻喉眼学报, 2023, 37(6): 24-32. doi:10.6040/j.issn.1673-3770.0.2022.241 SUN Xiwen, LUO Chunyu, LI Zhipeng, et al. Role of ferroptosis in inflammatory diseases of the respiratory tract: a review of recent advances[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(6): 24-32. doi:10.6040/j.issn.1673-3770.0.2022.241
[29] Yan HF, Zou T, Tuo QZ, et al. Ferroptosis: mechanisms and links with diseases[J]. Signal Transduct Target Ther, 2021, 6(1): 49. doi:10.1038/s41392-020-00428-9
[30] Yang WS, Kim KJ, Gaschler MM, et al. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis[J]. Proc Natl Acad Sci USA, 2016, 113(34): E4966-E4975. doi:10.1073/pnas.1603244113
[31] Stockwell BR, Angeli JPF, Bayir H, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease[J]. Cell, 2017, 171(2): 273-285. doi:10.1016/j.cell.2017.09.021
[32] Rochette L, Dogon G, Rigal E, et al. Lipid peroxidation and iron metabolism: two corner stones in the homeostasis control of ferroptosis[J]. Int J Mol Sci, 2022, 24(1): 449. doi:10.3390/ijms24010449
[33] Stockwell BR. Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications[J]. Cell, 2022, 185(14): 2401-2421. doi:10.1016/j.cell.2022.06.003
[34] Jiang L, Hickman JH, Wang SJ, et al. Dynamic roles of p53-mediated metabolic activities in ROS-induced stress responses[J]. Cell Cycle, 2015, 14(18): 2881-2885. doi:10.1080/15384101.2015.1068479
[35] Ou Y, Wang SJ, Li DW, et al. Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses[J]. Proc Natl Acad Sci USA, 2016, 113(44): E6806-E6812. doi:10.1073/pnas.1607152113
[36] Tarangelo A, Magtanong L, Bieging-Rolett KT, et al. p53 suppresses metabolic stress-induced ferroptosis in cancer cells[J]. Cell Rep, 2018, 22(3): 569-575. doi:10.1016/j.celrep.2017.12.077
[37] Yagoda N, von Rechenberg M, Zaganjor E, et al. RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels[J]. Nature, 2007, 447(7146): 864-868. doi:10.1038/nature05859
[38] Shimada K, Skouta R, Kaplan A, et al. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis[J]. Nat Chem Biol, 2016, 12(7): 497-503. doi:10.1038/nchembio.2079
[39] Ye YZ, Chen A, Li L, et al. Repression of the antiporter SLC7A11/glutathione/glutathione peroxidase 4 axis drives ferroptosis of vascular smooth muscle cells to facilitate vascular calcification[J]. Kidney Int, 2022, 102(6): 1259-1275. doi:10.1016/j.kint.2022.07.034
[40] Bersuker K, Hendricks JM, Li ZP, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis[J]. Nature, 2019, 575(7784): 688-692. doi:10.1038/s41586-019-1705-2
[41] Doll S, Freitas FP, Shah R, et al. FSP1 is a glutathione-independent ferroptosis suppressor[J]. Nature, 2019, 575(7784): 693-698. doi:10.1038/s41586-019-1707-0
[42] Jiang Y, Zhao JS, Li RQ, et al. CircLRFN5 inhibits the progression of glioblastoma via PRRX2/GCH1 mediated ferroptosis[J]. J Exp Clin Cancer Res, 2022, 41(1): 307. doi:10.1186/s13046-022-02518-8
[43] Ooko E, Saeed MEM, Kadioglu O, et al. Artemisinin derivatives induce iron-dependent cell death(ferroptosis)in tumor cells[J]. Phytomedicine, 2015, 22(11): 1045-1054. doi:10.1016/j.phymed.2015.08.002
[44] Miotto G, Rossetto M, Di Paolo ML, et al. Insight into the mechanism of ferroptosis inhibition by ferrostatin-1[J]. Redox Biol, 2020, 28: 101328. doi:10.1016/j.redox.2019.101328
[45] Dawczynski J, Blum M, Winnefeld K, et al. Increased content of zinc and iron in human cataractous lenses[J]. Biol Trace Elem Res, 2002, 90(1/2/3): 15-23. doi:10.1385/BTER: 90: 1-3: 15
[46] Garner B, Roberg K, Qian M, et al. Distribution of ferritin and redox-active transition metals in normal and cataractous human lenses[J]. Exp Eye Res, 2000, 71(6): 599-607. doi:10.1006/exer.2000.0912
[47] Cekiç O, Bardak Y, Totan Y, et al. Nickel, chromium, manganese, iron and aluminum levels in human cataractous and normal lenses[J]. Ophthalmic Res, 1999, 31(5): 332-336. doi:10.1159/000055555
[48] Truscott RJW. Age-related nuclear cataract-oxidation is the key[J]. Exp Eye Res, 2005, 80(5): 709-725. doi:10.1016/j.exer.2004.12.007
[49] Beebe DC, Holekamp NM, Shui YB. Oxidative damage and the prevention of age-related cataracts[J]. Ophthalmic Res, 2010, 44(3): 155-165. doi:10.1159/000316481
[50] Lou MF. Redox regulation in the lens[J]. Prog Retin Eye Res, 2003, 22(5): 657-682. doi:10.1016/s1350-9462(03)00050-8
[51] Fan XJ, Sell DR, Hao CL, et al. Vitamin C is a source of oxoaldehyde and glycative stress in age-related cataract and neurodegenerative diseases[J]. Aging Cell, 2020, 19(7): e13176. doi:10.1111/acel.13176
[52] 李琪, 刘会彬, 李英卓, 等. 年龄相关性白内障晶状体脂质过氧化及抗氧化能力的变化[J]. 现代生物医学进展, 2013, 13(24): 4702-4704. doi:10.13241/j.cnki.pmb.2013.24.049 LI Qi, LIU Huibin, LI Yingzhuo, et al. The changes of lipid peroxidation and antioxidation ability in lens of aged-related cataract[J]. Progress in Modern Biomedicine, 2013, 13(24): 4702-4704. doi:10.13241/j.cnki.pmb.2013.24.049
[53] Babizhayev MA, Deyev AI, Linberg LF. Lipid peroxidation as a possible cause of cataract[J]. Mech Ageing Dev, 1988, 44(1): 69-89. doi:10.1016/0047-6374(88)90080-2
[54] 伍超, 杨旭. 硫氧还蛋白2在老年白内障患者晶状体前囊膜中的表达及其与细胞凋亡、氧化应激的关系[J]. 河北医科大学学报, 2020, 41(7): 801-804, 833. doi:10.3969/j.issn.1007-3205.2020.07.013 WU Chao, YANG Xu. Expression of thioredoxin-2 in anterior capsule of lens and its relationship with apoptosis and oxidative stress in elderly cataract patients[J]. Journal of Hebei Medical University, 2020, 41(7): 801-804, 833. doi:10.3969/j.issn.1007-3205.2020.07.013
[55] Romano A, Serviddio G, Calcagnini S, et al. Linking lipid peroxidation and neuropsychiatric disorders: focus on 4-hydroxy-2-nonenal[J]. Free Radic Biol Med, 2017, 111: 281-293. doi:10.1016/j.freeradbiomed.2016.12.046
[1] WU Min, LI Zhengyang, MENG Jie, YE Huiping. Molecular mechanisms of programmed cell death and its role in nasopharyngeal carcinoma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2025, 39(2): 152-157.
[2] SUN Xiwen, LUO Chunyu, LI Zhipeng, ZHANG Weitian. Role of ferroptosis in inflammatory diseases of the respiratory tract: a review of recent advances [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(6): 24-32.
[3] HAN Yiping, ZHANG Han. Research progress on the pathogenesis of posterior capsular opacification and on anterior capsular polishing [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(4): 181-186.
[4] . Effect of light-emitting diode light of different wavelengths on the rat lens: a preliminary study [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(5): 138-144.
[5] WANG Hui, WEN Yan, YAN Li, YU Xiaoming, NING Hong. The effect of transforming growth factor-β1 on epithelial-mesenchymal transition in human lens epithelial cells. [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2017, 31(4): 76-79.
[6] SI Yan-fang,GUAN Juan,ZHOU Li,SHENG Yu . Changes of tear film following cataract surgeries in highly senile patients with age-related cataracts [J]. JOURNAL OF SHANDONG UNIVERSITY (OTOLARYNGOLOGY AND OPHTHALMOLOGY), 2008, 22(1): 13-16 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!