Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2025, Vol. 39 ›› Issue (5): 49-60.doi: 10.6040/j.issn.1673-3770.0.2025.144

• Original Article • Previous Articles    

Mendelian randomization study of gut microbiota, chronic sinusitis, and nasal polyps: Causal relationships and metabolite-mediated effects

ZHANG Jiaqi1,2, YUAN Ye1,2, HONG Chen3, GU Min4, CHENG Lei2,5,6, LU Meiping1,2   

  1. 1. Department of Otorhinolaryngology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, Jiangsu, China2. Clinical Allergy Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, Jiangsu, China3. Department of Otorhinolaryngology, The Third the People's Hospital of Bengbu/ Central Hospital of Bengbu, Bengbu 233000, Anhui, China4. Department of Otorhinolaryngology & Head and Neck Surgery, BenQ Hospital (BenQ Medical Center)Affiliated with Nanjing Medical University, Nanjing 210029, Jiangsu, China5. Department of Allergology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, Jiangsu, China6. International Centre for Allergy Research, Nanjing Medical University, Nanjing 210029, Jiangsu, China
  • Published:2025-09-19

Abstract: Objective This study aimed to explore the causal relationships between gut microbiota and chronic rhinosinusitis(CRS)or nasal polyps(NP)using Mendelian randomization(MR)analysis and to assess the mediating role of circulating metabolites. Methods Instrumental variables(IVs)were selected based on gut microbiota genotype data from the MiBioGen consortium and GWAS data from FinnGen and UK Biobank. Causal effects were evaluated using inverse variance weighting(IVW), MR-Egger regression, and weighted median(WM)methods. Sensitivity analyses were conducted using Cochran's Q test, MR-Egger intercept test, MR-PRESSO global test, and leave-one-out analysis. Metabolite-mediated pathways were investigated using two-step MR mediation analysis. Multivariable MR was also applied to evaluate the impact of telomere length on the associations between Bifidobacterium-related microbiota and CRS or NP. Results The MR analysis revealed seven gut microbial taxa significantly associated with CRS and eight associated with NP(PFDR<0.05). Metabolite and pathway analyses identified key metabolic processes, including amino acid metabolism, carbohydrate and energy metabolism, lipid and steroid metabolism, short-chain fatty acid metabolism, and bile acid metabolism. Mediation analysis confirmed four causal pathways involving microbiota, metabolites, and diseases. Additionally, multivariable MR demonstrated Additionally, multivariable MR demonstrated that adjusting for telomere length attenuated the causal effects of the genus Bifidobacterium and phylum Actinobacteria on CRS, rendering them non-significant. Notably, the genus Family_XIII_UCG-001 was observed to reduce CRS risk by modulating N-α-acetylornithine(mediation proportion: 4.81%), while the order Desulfovibrionales exhibited protective effects on NP through carnitine-related metabolism(mediation proportion: 6.50%). Conclusion There is a complex causal relationship between the gut microbiota and CRS and its phenotypes, with metabolites playing an important mediating role. This study provides a new perspective on the pathogenesis of CRS.

Key words: Gut microbiota, Chronic rhinosinusitis, Nasal polyps, Mendelian randomization, Circulating metabolites

CLC Number: 

  • R765.4+1
[1] Fokkens WJ, Lund VJ, Hopkins C, et al. European position paper on rhinosinusitis and nasal polyps 2020[J]. Rhinology, 2020, 58(29): 1-464. doi: 10.4193/Rhin20.600
[2] 中华耳鼻咽喉头颈外科杂志编辑委员会鼻科组, 中华医学会耳鼻咽喉头颈外科学分会鼻科学组. 慢性鼻窦炎诊断和治疗指南(2024)[J]. 中华耳鼻咽喉头颈外科杂志, 2025, 60(3): 221-249. doi: 10.3760/cma.j.cn115330-20250116-00051 Subspecialty Group of Rhinology, Editorial Board of Chinese journal of 0torhinolaryngology Head and Neck Surgery, Subspecialty Group of Rhinology, Society of Otorhinolaryngology Head and Neck Surgery, Chinese Medical Association. Guideline for diagnosis and treatment of chronic rhinosinusitis(2024)[J]. Chin J Otorhinolaryngol Head Neck Surg, 2025, 60(3): 221-249. doi: 10.3760/cma.j.cn115330-20250116-00051
[3] Takabayashi T, Schleimer RP. Formation of nasal polyps: The roles of innate type 2 inflammation and deposition of fibrin[J]. J Allergy Clin Immunol, 2020, 145(3): 740-750. doi: 10.1016/j.jaci.2020.01.027
[4] Bachert C, Bhattacharyya N, Desrosiers M, et al. Burden of disease in chronic rhinosinusitis with nasal polyps[J]. J Asthma Allergy, 2021, 14: 127-134. doi: 10.2147/JAA.S290424
[5] Rosati D, Rosato C, Pagliuca G, et al. Predictive markers of long-term recurrence in chronic rhinosinusitis with nasal polyps[J]. Am J Otolaryngol, 2020, 41(1): 102286. doi: 10.1016/j.amjoto.2019.102286
[6] Michalik M, Podbielska-Kubera A, Basińska AM, et al. Alteration of indicator gut microbiota in patients with chronic sinusitis[J]. Immun Inflamm Dis, 2023, 11(9): e996. doi: 10.1002/iid3.996
[7] Dang AT, Marsland BJ. Microbes, metabolites, and the gut-lung axis[J]. Mucosal Immunol, 2019, 12(4): 843-850. doi: 10.1038/s41385-019-0160-6
[8] Ma PJ, Wang MM, Wang Y. Gut microbiota: a new insight into lung diseases[J]. Biomed Pharmacother, 2022, 155: 113810. doi: 10.1016/j.biopha.2022.113810
[9] Skrivankova VW, Richmond RC, Woolf BAR, et al. Strengthening the reporting of observational studies in epidemiology using mendelian randomisation(STROBE-MR): explanation and elaboration[J]. BMJ, 2021, 375: n2233. doi: 10.1136/bmj.n2233
[10] Kurilshikov A, Medina-Gomez C, Bacigalupe R, et al. Large-scale association analyses identify host factors influencing human gut microbiome composition[J]. Nat Genet, 2021, 53(2): 156-165. doi: 10.1038/s41588-020-00763-1
[11] Kurki MI, Karjalainen J, Palta P, et al. FinnGen provides genetic insights from a well-phenotyped isolated population[J]. Nature, 2023, 613(7944): 508-518. doi: 10.1038/s41586-022-05473-8
[12] Sudlow C, Gallacher J, Allen N, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age[J]. PLoS Med, 2015, 12(3): e1001779. doi: 10.1371/journal.pmed.1001779
[13] Codd V, Wang QN, Allara E, et al. Polygenic basis and biomedical consequences of telomere length variation[J]. Nat Genet, 2021, 53(10): 1425-1433. doi: 10.1038/s41588-021-00944-6
[14] Chen YH, Lu TY, Pettersson-Kymmer U, et al. Genomic atlas of the plasma metabolome prioritizes metabolites implicated in human diseases[J]. Nat Genet, 2023, 55(1): 44-53. doi: 10.1038/s41588-022-01270-1
[15] Long YW, Tang LH, Zhou YY, et al. Causal relationship between gut microbiota and cancers: a two-sample Mendelian randomisation study[J]. BMC Med, 2023, 21(1): 66. doi: 10.1186/s12916-023-02761-6
[16] Xu Q, Ni JJ, Han BX, et al. Causal relationship between gut microbiota and autoimmune diseases: a two-sample mendelian randomization study[J]. Front Immunol, 2022, 12: 746998. doi: 10.3389/fimmu.2021.746998
[17] Li R, Guo Q, Zhao J, et al. Assessing causal relationships between gut microbiota and asthma: evidence from two sample Mendelian randomization analysis[J]. Front Immunol, 2023, 14: 1148684. doi: 10.3389/fimmu.2023.1148684
[18] Sun J, Wang M, Kan Z. Causal relationship between gut microbiota and polycystic ovary syndrome: a literature review and Mendelian randomization study[J]. Frontiers in Endocrinology, 2024, 15:1-17. doi: 10.3389/fendo.2024.1280983
[19] Slatkin M. Linkage disequilibrium: understanding the evolutionary past and mapping the medical future[J]. Nat Rev Genet, 2008, 9(6): 477-485. doi: 10.1038/nrg2361
[20] Bowden J, Del Greco M F, Minelli C, et al. Improving the accuracy of two-sample summary-data Mendelian randomization: moving beyond the NOME assumption[J]. Int J Epidemiol, 2019, 48(3): 728-742. doi: 10.1093/ije/dyy258
[21] Wang JH, Zhao X, Luo R, et al. The causal association between systemic inflammatory regulators and primary ovarian insufficiency: a bidirectional mendelian randomization study[J]. J Ovarian Res, 2023, 16(1): 191. doi: 10.1186/s13048-023-01272-5
[22] Jiang DM, Hou JH, Nan HT, et al. Relationship between hearing impairment and dementia and cognitive function: a Mendelian randomization study[J]. Alzheimers Res Ther, 2024, 16(1): 215. doi: 10.1186/s13195-024-01586-6
[23] Pierce BL, Ahsan H, Vanderweele TJ. Power and instrument strength requirements for Mendelian randomization studies using multiple genetic variants[J]. Int J Epidemiol, 2011, 40(3): 740-752. doi: 10.1093/ije/dyq151
[24] Burgess S, Thompson SG. Bias in causal estimates from Mendelian randomization studies with weak instruments[J]. Stat Med, 2011, 30(11): 1312-1323. doi: 10.1002/sim.4197
[25] Skrivankova VW, Richmond RC, Woolf BAR, et al. Strengthening the reporting of observational studies in epidemiology using mendelian randomization: the STROBE-MR statement[J]. JAMA, 2021, 326(16): 1614-1621. doi: 10.1001/jama.2021.18236
[26] Hartwig FP, Davies NM, Hemani G, et al. Two-sample mendelian randomization: avoiding the downsides of a powerful, widely applicable but potentially fallible technique[J]. Int J Epidemiol, 2016, 45(6): 1717-1726. doi: 10.1093/ije/dyx028
[27] Burgess S, Scott RA, Timpson NJ, et al. Using published data in mendelian randomization: a blueprint for efficient identification of causal risk factors[J]. Eur J Epidemiol, 2015, 30(7): 543-552. doi: 10.1007/s10654-015-0011-z
[28] Verbanck M, Chen CY, Neale B, et al. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases[J]. Nat Genet, 2018, 50(5): 693-698. doi: 10.1038/s41588-018-0099-7
[29] Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through egger regression[J]. Int J Epidemiol, 2015, 44(2): 512-525. doi: 10.1093/ije/dyv080
[30] Burgess S, Thompson SG. Interpreting findings from Mendelian randomization using the MR-Egger method[J]. Eur J Epidemiol, 2017, 32(5): 377-389. doi: 10.1007/s10654-017-0255-x
[31] Burgess S, Bowden J, Fall T, et al. Sensitivity analyses for robust causal inference from mendelian randomization analyses with multiple genetic variants[J]. Epidemiology, 2017, 28(1): 30-42. doi: 10.1097/EDE.0000000000000559
[32] Carter AR, Sanderson E, Hammerton G, et al. Mendelian randomisation for mediation analysis: current methods and challenges for implementation[J]. Eur J Epidemiol, 2021, 36(5): 465-478. doi: 10.1007/s10654-021-00757-1
[33] Sanderson E, Davey Smith G, Windmeijer F, et al. An examination of multivariable Mendelian randomization in the single-sample and two-sample summary data settings[J]. Int J Epidemiol, 2019, 48(3): 713-727. doi: 10.1093/ije/dyy262
[34] Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans[J]. Bioinformatics, 2010, 26(17): 2190-2191. doi: 10.1093/bioinformatics/btq340
[35] Bourgault J, Abner E, Manikpurage HD, et al. Proteome-wide mendelian randomization identifies causal links between blood proteins and acute pancreatitis[J]. Gastroenterology, 2023, 164(6): 953-965.e3. doi: 10.1053/j.gastro.2023.01.028
[36] Xie JM, Chen YR, Cai GJ, et al. Tree visualization by one table(tvBOT): a web application for visualizing, modifying and annotating phylogenetic trees[J]. Nucleic Acids Res, 2023, 51(1): 587-592. doi: 10.1093/nar/gkad359
[37] Pang ZQ, Lu Y, Zhou GY, et al. MetaboAnalyst 6.0: towards a unified platform for metabolomics data processing, analysis and interpretation[J]. Nucleic Acids Res, 2024, 52(1): 398-406. doi: 10.1093/nar/gkae253
[38] Mahdavinia M, Keshavarzian A, Tobin MC, et al. A comprehensive review of the nasal microbiome in chronic rhinosinusitis(CRS)[J]. Clin Experimental Allergy, 2016, 46(1): 21-41. doi: 10.1111/cea.12666
[39] Yamanishi S, Pawankar R. Current advances on the microbiome and role of probiotics in upper airways disease[J]. Curr Opin Allergy Clin Immunol, 2020, 20(1): 30-35. doi: 10.1097/ACI.0000000000000604
[40] Rawls M, Ellis AK. The microbiome of the nose[J]. Ann Allergy Asthma Immunol, 2019, 122(1): 17-24. doi: 10.1016/j.anai.2018.05.009
[41] Balamohan SM, Tate AD, Dobson BC, et al. Comparison between the sinus and gut microbiome in patients with chronic sinus disease[J]. otolaryngology, 2018, 8(3): 1-4. doi: 10.4172/2161-119x.1000349
[42] Fusco W, Lorenzo MB, Cintoni M, et al. Short-chain fatty-acid-producing bacteria: key components of the human gut microbiota[J]. Nutrients, 2023, 15(9): 2211. doi: 10.3390/nu15092211
[43] Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism[J]. Gut Microbes, 2016, 7(3): 189-200. doi: 10.1080/19490976.2015.1134082
[44] Wang HB, Wang PY, Wang X, et al. Butyrate enhances intestinal epithelial barrier function via up-regulation of tight junction protein Claudin-1 transcription[J]. Dig Dis Sci, 2012, 57(12): 3126-3135. doi: 10.1007/s10620-012-2259-4
[45] Mann ER, Lam YK, Uhlig HH. Short-chain fatty acids: linking diet, the microbiome and immunity[J]. Nat Rev Immunol, 2024, 24(8): 577-595. doi: 10.1038/s41577-024-01014-8
[46] Liu PY, Wang YB, Yang G, et al. The role of short-chain fatty acids in intestinal barrier function, inflammation, oxidative stress, and colonic carcinogenesis[J]. Pharmacol Res, 2021, 165: 105420. doi: 10.1016/j.phrs.2021.105420
[47] Blaak EE, Canfora EE, Theis S, et al. Short chain fatty acids in human gut and metabolic health[J]. Benef Microbes, 2020, 11(5): 411-455. doi: 10.3920/BM2020.0057
[48] McBride DA, Dorn NC, Yao MN, et al. Short-chain fatty acid-mediated epigenetic modulation of inflammatory T cells in vitro[J]. Drug Deliv Transl Res, 2023, 13(7): 1912-1924. doi: 10.1007/s13346-022-01284-6
[49] Mafra D, Ribeiro M, Fonseca L, et al. Archaea from the gut microbiota of humans: could be linked to chronic diseases?[J]. Anaerobe, 2022, 77: 102629. doi: 10.1016/j.anaerobe.2022.102629
[50] Sereme Y, Mezouar S, Grine G, et al. Methanogenic Archaea: emerging partners in the field of allergic diseases[J]. Clin Rev Allergy Immunol, 2019, 57(3): 456-466. doi: 10.1007/s12016-019-08766-5
[51] Zhou HY, Huang DD, Sun ZT, et al. Effects of intestinal Desulfovibrio bacteria on host health and its potential regulatory strategies: a review[J]. Microbiol Res, 2024, 284: 127725. doi: 10.1016/j.micres.2024.127725
[52] Hong Y, Sheng LL, Zhong J, et al. Desulfovibrio vulgaris, a potent acetic acid-producing bacterium, attenuates nonalcoholic fatty liver disease in mice[J]. Gut Microbes, 2021, 13(1): 1-20. doi: 10.1080/19490976.2021.1930874
[53] Khan MT, Dwibedi C, Sundh D, et al. Synergy and oxygen adaptation for development of next-generation probiotics[J]. Nature, 2023, 620(7973): 381-385. doi: 10.1038/s41586-023-06378-w
[54] Ghonimy A, Zhang DM, Farouk MH, et al. The impact of carnitine on dietary fiber and gut bacteria metabolism and their mutual interaction in monogastrics[J]. Int J Mol Sci, 2018, 19(4): 1008. doi: 10.3390/ijms19041008
[55] Zahedi E, Sadr SS, Sanaeierad A, et al. Chronic acetyl-L-carnitine treatment alleviates behavioral deficits and neuroinflammation through enhancing microbiota in valproate model of autism[J]. Biomed Pharmacother, 2023, 163: 114848. doi: 10.1016/j.biopha.2023.114848
[56] Cukrowska B, Biera JB, Zakrzewska M, et al. The relationship between the infant gut microbiota and allergy. the role of Bifidobacterium breve and prebiotic oligosaccharides in the activation of anti-allergic mechanisms in early life[J]. Nutrients, 2020, 12(4): 946. doi: 10.3390/nu12040946
[57] Maniscalco M, Fuschillo S, Mormile I, et al. Exhaled nitric oxide as biomarker of type 2 diseases[J]. Cells, 2023, 12(21): 2518. doi: 10.3390/cells12212518
[58] Olonisakin TF, Moore JA, Barel S, et al. Fractional exhaled nitric oxide as a marker of mucosal inflammation in chronic rhinosinusitis[J]. Am J Rhinol Allergy, 2022, 36(4): 465-472. doi: 10.1177/19458924221080260
[59] Liu AL, Ma T, Xu N, et al. Adjunctive probiotics alleviates asthmatic symptoms via modulating the gut microbiome and serum metabolome[J]. Microbiol Spectr, 2021, 9(2): e0085921. doi: 10.1128/Spectrum.00859-21
[60] Benedict JJ, Lelegren M, Han JK, et al. Nasal nitric oxide as a biomarker in the diagnosis and treatment of sinonasal inflammatory diseases: a review of the literature[J]. Ann Otol Rhinol Laryngol, 2023, 132(4): 460-469. doi: 10.1177/00034894221093890
[61] Agus A, Clément K, Sokol H. Gut microbiota-derived metabolites as central regulators in metabolic disorders[J]. Gut, 2021, 70(6): 1174-1182. doi: 10.1136/gutjnl-2020-323071
[62] Yahsi B, Gunaydin G. Immunometabolism-the role of branched-chain amino acids[J]. Frontiers in Immunology, 2022, 13:1-20. doi: 10.3389/fimmu.2022.886822
[63] Li J, Chen MX, Lu LL, et al. Branched-chain amino acid transaminase 1 inhibition attenuates childhood asthma in mice by effecting airway remodeling and autophagy[J]. Respir Physiol Neurobiol, 2022, 306: 103961. doi: 10.1016/j.resp.2022.103961
[64] Celik M, ?瘙塁en A, Koyuncu(·overI), et al. Plasma-free amino acid profiling of nasal polyposis patients[J]. Comb Chem High Throughput Screen, 2019, 22(9): 657-662. doi: 10.2174/1386207322666190920110324
[1] ZHANG Guangling, CHEN Xingxue, WU Tianyi, SUN Zhanwei, WANG Weiwei, LI Shichao,WANG Guangke. The expression and function of Tespa1 in chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2025, 39(2): 35-42.
[2] CAO Zhengyong, LI Xiaobo. Comparison of the safety and efficacy of short-course postoperative topical glucocorticoid adjuvant therapy for eCRSwNP combined with asthma [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2025, 39(2): 43-50.
[3] WANG Wenqing, ZHANG Dan, ZHU Mengdi, WANG Luyang, YANG Peipei, SUN Sisi, ZHANG Qiumin, ZHOU Hui. Changes of clinical and histopathological characteristics in recurrent chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2025, 39(1): 46-53.
[4] WANG Aowei, SHI Wenjie. Study on correlation between traditional Chinese medicine syndrome types and TFH cell related factors in CRSwNP [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2025, 39(1): 54-60.
[5] ZHANG Jie, NIMA Jizong, XU Xiaodong, ZHOU Jing, LIU Jianmin, LUO Yirui, DU Jintao, BA Luo. Effect of Crocin on Type 2 inflammation in eosinophilic chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2025, 39(1): 61-67.
[6] SHI Zhonggang, CAI Xiaolan, LI Xuezhong, ZHANG Liqiang, FENG Xin. Maxillary cyst with inverted papilloma: a case report and literature review [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2025, 39(1): 123-129.
[7] ZHANG Yunqiu, REN Xiumin, XU Ou, DONG Jinhui, WANG Jianxing. Research progress on omalizumab targeted therapy for chronic sinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2025, 39(1): 136-140.
[8] LI Ting, ZHAO Chong, WU Xian. The relationship between miR-34a expression in nasal mucosa tissue and postoperative recurrence in patients with chronic sinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(5): 20-25.
[9] CHEN Xingxue, ZHANG Guangling, WU Tianyi, WANG Weiwei, SUN Zhanwei, LI Shichao, WANG Guangke. Analysis of anti-IL-4Rα monoclonal antibody and endoscopic sinus surgery in the treatment of eosinophilic chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(4): 43-54.
[10] ZHANG Shihan, LIU Hongbing. Effect of matrix metalloproteinase on tissue remodeling in chronic rhinosinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2024, 38(3): 116-123.
[11] WANG Lixue, ZENG Yi, WANG Lixin, PENG Xianbing. Clinical observation of the effect of infiltrating Biprofen Gelatin Sponge after functional endoscopic sinus surgery [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(5): 16-25.
[12] WANG Xiaoai, ZHANG Qianqian, CHENG Xiangyu, LI Zhipeng, ZHANG Weitian, YE Haibo. A clinical efficacy analysis of vidian neurectomy in the treatment of type 2 chronic rhinosinusitis with allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(5): 42-49.
[13] ZHU Yu, ZHU Xinhua. Research progress on the role of TH2 cytokines in Type2 chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(5): 156-161.
[14] CUI Ning, WANG Yunmeng, YANG Jingpu. Research progress on the role and regulatory mechanism of group 2 innate lymphoid cells in chronic rhinosinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(4): 153-159.
[15] WANG Anyang, LI Chaoyou, XUE Gang, WU Jingfang. Relationship between intestinal flora and thyroid diseases [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(1): 132-139.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!