Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2023, Vol. 37 ›› Issue (4): 153-159.doi: 10.6040/j.issn.1673-3770.0.2022.192

Previous Articles    

Research progress on the role and regulatory mechanism of group 2 innate lymphoid cells in chronic rhinosinusitis

CUI Ning, WANG Yunmeng, YANG Jingpu   

  1. Department of Otorhinolaryngology & Head and Neck Surgery, Second Hospital of Jilin University, Changchun 130041, Jilin, China
  • Published:2023-07-27

Abstract: Chronic rhinosinusitis is a chronic inflammatory disease that occurs in the mucosa of the sinuses, mainly manifested by nasal symptoms such as nasal congestion and runny nose, followed by head and facial swelling, and decreased or lost sense of smell. The course of disease is no less than 12 weeks. It is often complicated with respiratory diseases such as asthma and chronic obstructive pulmonary disease. As an inflammatory disease with a multifactorial etiology, it involves the immune system and epithelial barrier and is influenced by microbiota, environmental and genetic factors. Its pathogenesis is not yet clear. Innate lymphoid cells are the innate counterparts of T lymphocytes and lack adaptive antigen receptors generated by recombination of genetic factors. Among them, group 2 innate lymphoid cells(ILC2s)release large amounts of type 2 cytokines after activation, which is closely related to Th2 inflammation. This article reviews the role of ILC2s in chronic rhinosinusitis with nasal polyps and its regulatory mechanism, especially its interaction with regulatory T cells.

Key words: Group 2 innate lymphoid cells, Sinusitis, Nasal polyps, Th2 inflammation, Regulatory T cells

CLC Number: 

  • R765.4+
[1] 中华耳鼻咽喉头颈外科杂志编辑委员会鼻科组, 中华医学会耳鼻咽喉头颈外科学分会鼻科学组. 中国慢性鼻窦炎诊断和治疗指南(2018)[J]. 中华耳鼻咽喉头颈外科杂志, 2019, 54(2): 81-100. doi:10.3760/cma.j.issn.1673-0860.2019.02.001
[2] Fokkens WJ, Lund VJ, Hopkins C, et al. European position paper on rhinosinusitis and nasal polyps 2020[J]. Rhinology, 2020, 58(Suppl S29): 1-464. doi:10.4193/Rhin20.600
[3] Cho SH, Hamilos DL, Han DH, et al. Phenotypes of chronic rhinosinusitis[J]. J Allergy Clin Immunol Pract, 2020, 8(5): 1505-1511. doi:10.1016/j.jaip.2019.12.021
[4] Lou HF, Meng YF, Piao YS, et al. Cellular phenotyping of chronic rhinosinusitis with nasal polyps[J]. Rhinology, 2016, 54(2): 150-159. doi:10.4193/Rhino15.271
[5] Stevens WW, Peters AT, Tan BK, et al. Associations between inflammatory endotypes and clinical presentations in chronic rhinosinusitis[J]. J Allergy Clin Immunol Pract, 2019, 7(8): 2812-2820.e3. doi:10.1016/j.jaip.2019.05.009
[6] Kato A, Schleimer RP, Bleier BS. Mechanisms and pathogenesis of chronic rhinosinusitis[J]. J Allergy Clin Immunol, 2022, 149(5): 1491-1503. doi:10.1016/j.jaci.2022.02.016
[7] Wang XD, Zhang N, Bo MY, et al. Diversity of TH cytokine profiles in patients with chronic rhinosinusitis: a multicenter study in Europe, Asia, and Oceania[J]. J Allergy Clin Immunol, 2016, 138(5): 1344-1353. doi:10.1016/j.jaci.2016.05.041
[8] Eifan AO, Durham SR. Pathogenesis of rhinitis[J]. Clin Exp Allergy, 2016, 46(9): 1139-1151. doi:10.1111/cea.12780
[9] Vivier E, Artis D, Colonna M, et al. Innate lymphoid cells: 10 years on[J]. Cell, 2018, 174(5): 1054-1066. doi:10.1016/j.cell.2018.07.017
[10] Spits H, di Santo JP. The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling[J]. Nat Immunol, 2011, 12(1): 21-27. doi:10.1038/ni.1962
[11] Ebbo M, Crinier A, Vély F, et al. Innate lymphoid cells: major players in inflammatory diseases[J]. Nat Rev Immunol, 2017, 17(11): 665-678. doi:10.1038/nri.2017.86
[12] Annunziato F, Romagnani C, Romagnani S. The 3 major types of innate and adaptive cell-mediated effector immunity[J]. J Allergy Clin Immunol, 2015, 135(3): 626-635. doi:10.1016/j.jaci.2014.11.001
[13] Bernink JH, Peters CP, Munneke M, et al. Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues[J]. Nat Immunol, 2013, 14(3): 221-229. doi:10.1038/ni.2534
[14] Morita H, Moro K, Koyasu S. Innate lymphoid cells in allergic and nonallergic inflammation[J]. J Allergy Clin Immunol, 2016, 138(5): 1253-1264. doi:10.1016/j.jaci.2016.09.011
[15] Eberl G, Marmon S, Sunshine MJ, et al. An essential function for the nuclear receptor RORgamma(t)in the generation of fetal lymphoid tissue inducer cells[J]. Nat Immunol, 2004, 5(1): 64-73. doi:10.1038/ni1022
[16] Fort MM, Cheung J, Yen D, et al. IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo[J]. Immunity, 2001, 15(6): 985-995. doi:10.1016/s1074-7613(01)00243-6
[17] Neill DR, Wong SH, Bellosi A, et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity[J]. Nature, 2010, 464(7293): 1367-1370. doi:10.1038/nature08900
[18] Mjösberg JM, Trifari S, Crellin NK, et al. Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161[J]. Nat Immunol, 2011, 12(11): 1055-1062. doi:10.1038/ni.2104
[19] Walford HH, Lund SJ, Baum RE, et al. Increased ILC2s in the eosinophilic nasal polyp endotype are associated with corticosteroid responsiveness[J]. Clin Immunol, 2014, 155(1): 126-135. doi:10.1016/j.clim.2014.09.007
[20] Miljkovic D, Bassiouni A, Cooksley C, et al. Association between group 2 innate lymphoid cells enrichment, nasal polyps and allergy in chronic rhinosinusitis[J]. Allergy, 2014, 69(9): 1154-1161. doi:10.1111/all.12440
[21] Stevens WW, Kato A. Group 2 innate lymphoid cells in nasal polyposis[J]. Ann Allergy Asthma Immunol, 2021, 126(2): 110-117. doi:10.1016/j.anai.2020.08.001
[22] Tojima I, Kouzaki H, Shimizu S, et al. Group 2 innate lymphoid cells are increased in nasal polyps in patients with eosinophilic chronic rhinosinusitis[J]. Clin Immunol, 2016, 170: 1-8. doi:10.1016/j.clim.2016.07.010
[23] Hopkins C. Chronic rhinosinusitis with nasal polyps[J]. N Engl J Med, 2019, 381(1): 55-63. doi:10.1056/NEJMcp1800215
[24] Oliphant CJ, Hwang YY, Walker JA, et al. MHCII-mediated dialog between group 2 innate lymphoid cells and CD4(+)T cells potentiates type 2 immunity and promotes parasitic helminth expulsion[J]. Immunity, 2014, 41(2): 283-295. doi:10.1016/j.immuni.2014.06.016
[25] Pelly VS, Kannan Y, Coomes SM, et al. IL-4-producing ILC2s are required for the differentiation of TH2 cells following Heligmosomoides polygyrus infection[J]. Mucosal Immunol, 2016, 9(6): 1407-1417. doi:10.1038/mi.2016.4
[26] Halim TY, Steer CA, Mathä L, et al. Group 2 innate lymphoid cells are critical for the initiation of adaptive T helper 2 cell-mediated allergic lung inflammation[J]. Immunity, 2014, 40(3): 425-435. doi:10.1016/j.immuni.2014.01.011
[27] Wu JQ, Cui YL, Zhu WW, et al. Critical role of OX40/OX40L in ILC2-mediated activation of CD4+T cells during respiratory syncytial virus infection in mice[J]. Int Immunopharmacol, 2019, 76: 105784. doi:10.1016/j.intimp.2019.105784
[28] Halim TYF, Rana BMJ, Walker JA, et al. Tissue-restricted adaptive type 2 immunity is orchestrated by expression of the costimulatory molecule OX40L on group 2 innate lymphoid cells[J]. Immunity, 2018, 48(6): 1195-1207.e6. doi:10.1016/j.immuni.2018.05.003
[29] Shi LL, Song J, Xiong P, et al. Disease-specific T-helper cell polarizing function of lesional dendritic cells in different types of chronic rhinosinusitis with nasal polyps[J]. Am J Respir Crit Care Med, 2014, 190(6): 628-638. doi:10.1164/rccm.201402-0234OC
[30] Maazi H, Patel N, Sankaranarayanan I, et al. ICOS: ICOS-ligand interaction is required for type 2 innate lymphoid cell function, homeostasis, and induction of airway hyperreactivity[J]. Immunity, 2015, 42(3): 538-551. doi:10.1016/j.immuni.2015.02.007
[31] Schwartz C, Khan AR, Floudas A, et al. ILC2s regulate adaptive Th2 cell functions via PD-L1 checkpoint control[J]. J Exp Med, 2017, 214(9): 2507-2521. doi:10.1084/jem.20170051
[32] Ho J, Bailey M, Zaunders J, et al. Group 2 innate lymphoid cells(ILC2s)are increased in chronic rhinosinusitis with nasal polyps or eosinophilia[J]. Clin Exp Allergy, 2015, 45(2): 394-403. doi:10.1111/cea.12462
[33] Patel NN, Kohanski MA, Maina IW, et al. Solitary chemosensory cells producing interleukin-25 and group-2 innate lymphoid cells are enriched in chronic rhinosinusitis with nasal polyps[J]. Int Forum Allergy Rhinol, 2018. doi:10.1002/alr.22142
[34] Ikutani M, Ogawa S, Yanagibashi T, et al. Elimination of eosinophils using anti-IL-5 receptor alpha antibodies effectively suppresses IL-33-mediated pulmonary arterial hypertrophy[J]. Immunobiology, 2018, 223(6/7): 486-492. doi:10.1016/j.imbio.2017.12.002
[35] Turner JE, Morrison PJ, Wilhelm C, et al. IL-9-mediated survival of type 2 innate lymphoid cells promotes damage control in helminth-induced lung inflammation[J]. J Exp Med, 2013, 210(13): 2951-2965. doi:10.1084/jem.20130071
[36] Shaw JL, Fakhri S, Citardi MJ, et al. IL-33-responsive innate lymphoid cells are an important source of IL-13 in chronic rhinosinusitis with nasal polyps[J]. Am J Respir Crit Care Med, 2013, 188(4): 432-439. doi:10.1164/rccm.201212-2227OC
[37] Toki S, Goleniewska K, Zhang J, et al. TSLP and IL-33 reciprocally promote each other's lung protein expression and ILC2 receptor expression to enhance innate type-2 airway inflammation[J]. Allergy, 2020, 75(7): 1606-1617. doi:10.1111/all.14196
[38] Wong CK, Li PW, Lam CWK. Intracellular JNK, p38 MAPK and NF-kappaB regulate IL-25 induced release of cytokines and chemokines from costimulated T helper lymphocytes[J]. Immunol Lett, 2007, 112(2): 82-91. doi:10.1016/j.imlet.2007.07.002
[39] Ogasawara N, Poposki JA, Klingler AI, et al. Role of RANK-L as a potential inducer of ILC2-mediated type 2 inflammation in chronic rhinosinusitis with nasal polyps[J]. Mucosal Immunol, 2020, 13(1): 86-95. doi:10.1038/s41385-019-0215-8
[40] Ohne Y, Silver JS, Thompson-Snipes L, et al. Erratum: IL-1 is a critical regulator of group 2 innate lymphoid cell function and plasticity[J]. Nat Immunol, 2016, 17(8): 1005. doi:10.1038/ni0816-1005a
[41] Ogasawara N, Poposki JA, Klingler AI, et al. TNF induces production of type 2 cytokines in human group 2 innate lymphoid cells[J]. J Allergy Clin Immunol, 2020, 145(1): 437-440.e8. doi:10.1016/j.jaci.2019.09.001
[42] Salimi M, Stöger L, Liu W, et al. Cysteinyl leukotriene E4 activates human group 2 innate lymphoid cells and enhances the effect of prostaglandin D2 and epithelial cytokines[J]. J Allergy Clin Immunol, 2017, 140(4): 1090-1100.e11. doi:10.1016/j.jaci.2016.12.958
[43] Kato A. Group 2 innate lymphoid cells in airway diseases[J]. Chest, 2019, 156(1): 141-149. doi:10.1016/j.chest.2019.04.101
[44] Knipfer L, Schulz-Kuhnt A, Kindermann M, et al. A CCL1/CCR8-dependent feed-forward mechanism drives ILC2 functions in type 2-mediated inflammation[J]. J Exp Med, 2019, 216(12): 2763-2777. doi:10.1084/jem.20182111
[45] Hurrell BP, Shafiei Jahani P, Akbari O. Social networking of group two innate lymphoid cells in allergy and asthma[J]. Front Immunol, 2018, 9: 2694. doi:10.3389/fimmu.2018.02694
[46] Duerr CU, McCarthy CDA, Mindt BC, et al. Type I interferon restricts type 2 immunopathology through the regulation of group 2 innate lymphoid cells[J]. Nat Immunol, 2016, 17(1): 65-75. doi:10.1038/ni.3308
[47] Morita H, Kubo T, Rückert B, et al. Induction of human regulatory innate lymphoid cells from group 2 innate lymphoid cells by retinoic acid[J]. J Allergy Clin Immunol, 2019, 143(6): 2190-2201.e9. doi:10.1016/j.jaci.2018.12.1018
[48] Lee GR. The balance of Th17 versus treg cells in autoimmunity[J]. Int J Mol Sci, 2018, 19(3): 730. doi:10.3390/ijms19030730
[49] Molofsky AB, van Gool F, Liang HE, et al. Interleukin-33 and interferon-γ counter-regulate group 2 innate lymphoid cell activation during immune perturbation[J]. Immunity, 2015, 43(1): 161-174. doi:10.1016/j.immuni.2015.05.019
[50] Rauber S, Luber M, Weber S, et al. Resolution of inflammation by interleukin-9-producing type 2 innate lymphoid cells[J]. Nat Med, 2017, 23(8): 938-944. doi:10.1038/nm.4373
[51] Rigas D, Lewis G, Aron JL, et al. Type 2 innate lymphoid cell suppression by regulatory T cells attenuates airway hyperreactivity and requires inducible T-cell costimulator-inducible T-cell costimulator ligand interaction[J]. J Allergy Clin Immunol, 2017, 139(5): 1468-1477.e2. doi:10.1016/j.jaci.2016.08.034
[52] Aron JL, Akbari O. Regulatory T cells and type 2 innate lymphoid cell-dependent asthma[J]. Allergy, 2017, 72(8): 1148-1155. doi:10.1111/all.13139
[53] Noval Rivas M, Burton OT, Oettgen HC, et al. IL-4 production by group 2 innate lymphoid cells promotes food allergy by blocking regulatory T-cell function[J]. J Allergy Clin Immunol, 2016, 138(3): 801-811.e9. doi:10.1016/j.jaci.2016.02.030
[54] Sharma S, Watanabe S, Sivam A, et al. Peripheral blood and tissue T regulatory cells in chronic rhinosinusitis[J]. Am J Rhinol Allergy, 2012, 26(5): 371-379. doi:10.2500/ajra.2012.26.3800
[55] Shi J, Fan Y, Xu R, et al. Characterizing T-cell phenotypes in nasal polyposis in Chinese patients[J]. J Investig Allergol Clin Immunol, 2009, 19(4): 276-282
[56] van Bruaene N, Pérez-Novo CA, Basinski TM, et al. T-cell regulation in chronic paranasal sinus disease[J]. J Allergy Clin Immunol, 2008, 121(6): 1435-1441, 1441.e1-3. doi:10.1016/j.jaci.2008.02.018
[57] Li Y, Wang W, Ying S, et al. A potentia role of group 2 innate lymphoid cells in eosinophilic chronic rhinosinusitis with nasal polyps[J]. Allergy Asthma Immunol Res, 2021, 13(3): 363-374. doi:10.4168/aair.2021.13.3.363
[1] AO Tian,CHENG Lei. An endotype study of chronic rhinosinusitis with nasal polyps and precise control and treatment under the guidance [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 7-14.
[2] XIONG Panhui, SHEN Yang,YANG Yucheng. Advancements in the diagnosis and treatment of chronic sinusitis based on phenotypes and endotypes [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 15-19.
[3] YAO Shuang,LOU Hongfei. Advances in endotypes and precision medicine in chronic rhinosinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 20-29.
[4] LIANG Xu,SHI Li. Research progress in biologic targeted drug therapy for chronic sinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 30-35.
[5] SHI Shuai, ZHENG Quan,CHENG Lei. Research advances of dupilumab in the treatment of chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 36-42.
[6] WANG Huan, HU Li,YU Hongmeng. Research progress of olfactory dysfunction in chronic rhinosinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 43-49.
[7] YI Ruonan,CHEN Fuquan. Eosinophils and Olfactory Dysfunction [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 50-55.
[8] GU Yu, WAN Xin,XIAO Zi'an. The interaction between neutrophils and eosinophils in chronic rhinosinusitis and the implications on treatment options [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 56-63.
[9] LIN Hai, ZHU Ying,ZHANG Weitian. The roles of ion channels in the pathogenesis of chronic rhinosinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 64-70.
[10] QIAO Xinjie,. Research progress on the signal transduction pathway and other factors related to epithelial-mesenchymal transformation in chronic rhinosinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 71-77.
[11] HUANG Danyi, ZHANG Ting,CHEN Jing, ZHANG Wei. Progress of research regarding the role of the epithelial barrier in chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 78-83.
[12] LI Jiani, ZHU Dongdong,MENG Cuida. The role of epigenetics in the pathogenesis of chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 84-91.
[13] YU Longgang,JIANG Yan. Research progress on the correlation between nasal bacterial microbiome and chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 92-97.
[14] CAO Xuan,XIAO Xuping, LI Yunqiu. Advances in the application of hyaluronic acid in chronic sinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 104-109.
[15] WANG Na,CHAI Xiangbin. Research progress on prostate-derived ETS factor in asthma and inflammatory diseases of the nasal mucosa [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 136-141.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!