Journal of Otolaryngology and Ophthalmology of Shandong University ›› 2023, Vol. 37 ›› Issue (5): 156-161.doi: 10.6040/j.issn.1673-3770.0.2022.258

• Review • Previous Articles    

Research progress on the role of TH2 cytokines in Type2 chronic rhinosinusitis with nasal polyps

ZHU Yu, ZHU Xinhua   

  1. Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
  • Published:2023-10-13

Abstract: Chronic rhinosinusitis(CRS)are classified as type 2 and non-type 2 intrainflammatory types according to the pathogenesis, where type 2 inflammation corresponds to chronic rhinosinusitis with nasal polyps(CRSwNP)dominated by eosinophil infiltration. Patients with typical type 2 CRSwNP are typically resistant to current treatments and exhibit high recurrence rates. Although some success has been achieved regarding treatment, targeting a single TH2 cytokine cannot completely eliminate type 2 CRSwNP in most patients. Therefore, targeting the TH2 cytokine and its downstream signal transduction pathway may present a novel approach for endotherapy. In this study, we review the intracellular signaling pathways activated by various type 2 cytokines(IL-4, IL-5, IL-9, IL-13, IL-25, and IL-33)after binding to their specific receptors in type 2 CRSwNP, in order to provide new targets for type 2 CRSwNP therapeutics.

Key words: Chronic rhinosinusitis, Nasal polyps, TH2 cytokines, Eosinophil, Signal transduction pathway

CLC Number: 

  • R765.4+1
[1] Fokkens WJ, Lund VJ, Hopkins C, et al. European position paper on rhinosinusitis and nasal polyps 2020[J]. Rhinology, 2020, 58(Suppl S29): 1-464. doi:10.4193/Rhin20.600
[2] Lee K, Tai JH, Lee SH, et al. Advances in the knowledge of the underlying airway remodeling mechanisms in chronic rhinosinusitis based on the endotypes: a review[J]. Int J Mol Sci, 2021, 22(2): 910. doi:10.3390/ijms22020910
[3] Wang XD, Zhang N, Bo MY, et al. Diversity of TH cytokine profiles in patients with chronic rhinosinusitis: a multicenter study in Europe, Asia, and Oceania[J]. J Allergy Clin Immunol, 2016, 138(5): 1344-1353. doi:10.1016/j.jaci.2016.05.041
[4] Busse WW, Kraft M, Rabe KF, et al. Understanding the key issues in the treatment of uncontrolled persistent asthma with type 2 inflammation[J]. Eur Respir J, 2021, 58(2): 2003393. doi:10.1183/13993003.03393-2020
[5] Avdeeva K, Fokkens W. Precision medicine in chronic rhinosinusitis with nasal polyps[J]. Curr Allergy Asthma Rep, 2018, 18(4): 25. doi:10.1007/s11882-018-0776-8
[6] Md SA, Md KJ, Thibaut van Zele MD P, et al. Endoscopic sinus surgery for type-2 CRS wNP: an endotype-based retrospective study[J]. Laryngoscope, 2019, 129(6): 1286-1292. doi:10.1002/lary.27815
[7] 陶丹丹, 董红军, 褚云锋, 等. 慢性鼻-鼻窦炎伴鼻息肉患者组织嗜酸性粒细胞与嗅觉功能障碍的相关性研究[J]. 山东大学耳鼻喉眼学报, 2020, 34(6): 16-20. doi:10.6040/j.issn.1673-3770.0.2019.388 TAO Dandan, DONG Hongjun, CHU Yunfeng, et al. Correlation between eosinophils and olfactory dysfunction in patients with CRSwNP after nasal operation[J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2020, 34(6): 16-20. doi:10.6040/j.issn.1673-3770.0.2019.388
[8] Gandhi NA, Bennett BL, Graham NMH, et al. Targeting key proximal drivers of type 2 inflammation in disease[J]. Nat Rev Drug Discov, 2016, 15(1): 35-50. doi:10.1038/nrd4624
[9] Kim HJ, Lim J, Jang YS, et al. Exogenous hydrogen peroxide induces lipid raft-mediated STAT-6 activation in T cells[J]. Cell Physiol Biochem, 2017, 42(6): 2467-2480. doi:10.1159/000480210
[10] Zhu JF. T helper 2(Th2)cell differentiation, type 2 innate lymphoid cell(ILC2)development and regulation of interleukin-4(IL-4)and IL-13 production[J]. Cytokine, 2015, 75(1): 14-24. doi:10.1016/j.cyto.2015.05.010
[11] Chen LQ, Grabowski KA, Xin JP, et al. IL-4 induces differentiation and expansion of Th2 cytokine-producing eosinophils[J]. J Immunol, 2004, 172(4): 2059-2066. doi:10.4049/jimmunol.172.4.2059
[12] Bal SM, Bernink JH, Nagasawa M, et al. IL-1β, IL-4 and IL-12 control the fate of group 2 innate lymphoid cells in human airway inflammation in the lungs[J]. Nat Immunol, 2016, 17(6): 636-645. doi:10.1038/ni.3444
[13] Poposki JA, Klingler AI, Tan BK, et al. Group 2 innate lymphoid cells are elevated and activated in chronic rhinosinusitis with nasal polyps[J]. Immun Inflamm Dis, 2017, 5(3): 233-243. doi:10.1002/iid3.161
[14] Fan GK, Wang HL, Takenaka H. Eosinophil infiltration and activation in nasal polyposis[J]. Acta Otolaryngol, 2007, 127(5): 521-526. doi:10.1080/00016480600951368
[15] Willebrand R, Dietschmann A, Nitschke L, et al. Murine eosinophil development and allergic lung eosinophilia are largely dependent on the signaling adaptor GRB2[J]. Eur J Immunol, 2018, 48(11): 1786-1795. doi:10.1002/eji.201847555
[16] Pelaia G, Vatrella A, Busceti MT, et al. Role of biologics in severe eosinophilic asthma-focus on reslizumab[J]. Ther Clin Risk Manag, 2016, 12: 1075-1082. doi:10.2147/TCRM.S111862
[17] Delemarre T, De Ruyck N, Holtappels G, et al. Unravelling the expression of interleukin-9 in chronic rhinosinusitis: a possible role for Staphylococcus aureus[J]. Clin Transl Allergy, 2020, 10(1): 41. doi:10.1186/s13601-020-00348-5
[18] Lin H, Lin D, Xiong XS, et al. Expression and regulation of interleukin-9 in chronic rhinosinusitis[J]. Am J Rhinol Allergy, 2015, 29(1): e18-e23. doi:10.2500/ajra.2015.29.4136
[19] Tsicopoulos A, Shimbara A, de Nadai P, et al. Involvement of IL-9 in the bronchial phenotype of patients with nasal polyposis[J]. J Allergy Clin Immunol, 2004, 113(3): 462-469. doi:10.1016/j.jaci.2003.12.009
[20] Shaw JL, Fakhri S, Citardi MJ, et al. IL-33-responsive innate lymphoid cells are an important source of IL-13 in chronic rhinosinusitis with nasal polyps[J]. Am J Respir Crit Care Med, 2013, 188(4): 432-439. doi:10.1164/rccm.201212-2227OC
[21] Yuan T, Zheng R, Liu J, et al. Role of yes-associated protein in interleukin-13 induced nasal remodeling of chronic rhinosinusitis with nasal polyps[J]. Allergy, 2021, 76(2): 600-604. doi:10.1111/all.14699
[22] Li X, Huang JC, Chen XH, et al. IL-19 induced by IL-13/IL-17A in the nasal epithelium of patients with chronic rhinosinusitis upregulates MMP-9 expression via ERK/NF-κB signaling pathway[J]. Clin Transl Allergy, 2021, 11(1): e12003. doi:10.1002/clt2.12003
[23] Jiao J, Duan S, Meng N, et al. Role of IFN-γ, IL-13, and IL-17 on mucociliary differentiation of nasal epithelial cells in chronic rhinosinusitis with nasal polyps[J]. Clin Exp Allergy, 2016, 46(3): 449-460. doi:10.1111/cea.12644
[24] Khalmuratova R, Lee MY, Park JW, et al. Evaluation of neo-osteogenesis in eosinophilic chronic rhinosinusitis using a nasal polyp murine model[J]. Allergy Asthma Immunol Res, 2020, 12(2): 306-321. doi:10.4168/aair.2020.12.2.306
[25] Khalmuratova R, Shin HW, Kim DW, et al. Interleukin(IL)-13 and IL-17A contribute to neo-osteogenesis in chronic rhinosinusitis by inducing RUNX2[J]. EBioMedicine, 2019, 46: 330-341. doi:10.1016/j.ebiom.2019.07.035
[26] PhD SMK, Bs IB, Ms HK, et al. Interleukin 13(IL-13)alters hypoxia-associated genes and upregulates CD73[J]. Int Forum Allergy Rhinol, 2020, 10(9): 1096-1102. doi:10.1002/alr.22630
[27] Huang ZQ, Liu J, Ong HH, et al. Interleukin-13 alters tight junction proteins expression thereby compromising barrier function and dampens Rhinovirus induced immune responses in nasal epithelium[J]. Front Cell Dev Biol, 2020, 8: 572749. doi:10.3389/fcell.2020.572749
[28] Schmidt H, Braubach P, Schilpp C, et al. IL-13 impairs tight junctions in airway epithelia[J]. Int J Mol Sci, 2019, 20(13): 3222. doi:10.3390/ijms20133222
[29] Lam EPS, Kariyawasam HH, Rana BMJ, et al. IL-25/IL-33-responsive TH2 cells characterize nasal polyps with a default TH17 signature in nasal mucosa[J]. J Allergy Clin Immunol, 2016, 137(5): 1514-1524. doi:10.1016/j.jaci.2015.10.019
[30] Luo XL, Li CL, Wang YM, et al. Interleukin-33 promotes Th2/Th17 response in eosinophilic and non-eosinophilic nasal polyps[J]. ORL J Otorhinolaryngol Relat Spec, 2020, 82(1): 34-39. doi:10.1159/000503976
[31] Iinuma T, Okamoto Y, Yamamoto H, et al. Interleukin-25 and mucosal T cells in noneosinophilic and eosinophilic chronic rhinosinusitis[J]. Ann Allergy Asthma Immunol, 2015, 114(4): 289-298. doi:10.1016/j.anai.2015.01.013
[32] Swaidani S, Bulek K, Kang ZZ, et al. T cell-derived Act1 is necessary for IL-25-mediated Th2 responses and allergic airway inflammation[J]. J Immunol, 2011, 187(6): 3155-3164. doi:10.4049/jimmunol.1002790
[33] Wu L, Zepp JA, Qian W, et al. A novel IL-25 signaling pathway through STAT5[J]. J Immunol, 2015, 194(9): 4528-4534. doi:10.4049/jimmunol.1402760
[34] Bachert C, Han JK, Desrosiers M, et al. Efficacy and safety of dupilumab in patients with severe chronic rhinosinusitis with nasal polyps(liberty np sinus-24 and liberty np sinus-52): results from two multicentre, randomised, double-blind, placebo-controlled, parallel-group phase 3 trials[J]. Lancet, 2019, 394(10209): 1638-1650. doi:10.1016/S0140-6736(19)31881-1
[35] Wang Q, Sun Q, Chen QG, et al. Efficacy and safety of anti-interleukin-5 therapies in chronic rhinosinusitis with nasal polyps: a systematic review and meta-analysis of randomized controlled trials[J]. Int Arch Allergy Immunol, 2022, 183(7): 732-743. doi:10.1159/000521859
[36] Lee MY, Kim DW, Shin HW. Targeting IL-25 as a novel therapy in chronic rhinosinusitis with nasal polyps[J]. Curr Opin Allergy Clin Immunol, 2017, 17(1): 17-22. doi:10.1097/ACI.0000000000000332
[37] Md YH J, Hyun-Jin Cho MD P, Md YJJ, et al. Therapeutic effects of intranasal tofacitinib on chronic rhinosinusitis with nasal polyps in mice[J]. Laryngoscope, 2021, 131(5): E1400-E1407. doi:10.1002/lary.29129
[1] WANG Lixue, ZENG Yi, WANG Lixin, PENG Xianbing. Clinical observation of the effect of infiltrating Biprofen Gelatin Sponge after functional endoscopic sinus surgery [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(5): 16-25.
[2] WANG Xiaoai, ZHANG Qianqian, CHENG Xiangyu, LI Zhipeng, ZHANG Weitian, YE Haibo. A clinical efficacy analysis of vidian neurectomy in the treatment of type 2 chronic rhinosinusitis with allergic rhinitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(5): 42-49.
[3] CUI Ning, WANG Yunmeng, YANG Jingpu. Research progress on the role and regulatory mechanism of group 2 innate lymphoid cells in chronic rhinosinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2023, 37(4): 153-159.
[4] AO Tian,CHENG Lei. An endotype study of chronic rhinosinusitis with nasal polyps and precise control and treatment under the guidance [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 7-14.
[5] YAO Shuang,LOU Hongfei. Advances in endotypes and precision medicine in chronic rhinosinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 20-29.
[6] LIANG Xu,SHI Li. Research progress in biologic targeted drug therapy for chronic sinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 30-35.
[7] SHI Shuai, ZHENG Quan,CHENG Lei. Research advances of dupilumab in the treatment of chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 36-42.
[8] WANG Huan, HU Li,YU Hongmeng. Research progress of olfactory dysfunction in chronic rhinosinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 43-49.
[9] YI Ruonan,CHEN Fuquan. Eosinophils and Olfactory Dysfunction [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 50-55.
[10] GU Yu, WAN Xin,XIAO Zi'an. The interaction between neutrophils and eosinophils in chronic rhinosinusitis and the implications on treatment options [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 56-63.
[11] LIN Hai, ZHU Ying,ZHANG Weitian. The roles of ion channels in the pathogenesis of chronic rhinosinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 64-70.
[12] QIAO Xinjie,. Research progress on the signal transduction pathway and other factors related to epithelial-mesenchymal transformation in chronic rhinosinusitis [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 71-77.
[13] HUANG Danyi, ZHANG Ting,CHEN Jing, ZHANG Wei. Progress of research regarding the role of the epithelial barrier in chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 78-83.
[14] LI Jiani, ZHU Dongdong,MENG Cuida. The role of epigenetics in the pathogenesis of chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 84-91.
[15] YU Longgang,JIANG Yan. Research progress on the correlation between nasal bacterial microbiome and chronic rhinosinusitis with nasal polyps [J]. Journal of Otolaryngology and Ophthalmology of Shandong University, 2022, 36(3): 92-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!